Math, asked by chethann398, 8 months ago

log 2 base 10 =x and log 3 base 10 = y what is log 60 base 10

Answers

Answered by sarthaknitinagarkar
1

log²10=x

log³10=y

log ⁶⁰10=log⁶10+log¹⁰10

=log²10+log³10+log¹⁰10

=x+y+1

:.value of log⁶⁰10=x+y+1

pls mark brainliest

Answered by Anonymous
3

\bigstar Explanation \bigstar

\longrightarrow Given:-

\log_{10} 2 = x ----\: \sf eqn (i)

\log_{10} 3 = y----\: \sf eqn (ii)

\longrightarrow To find:-

Value of \log_{10} 60

\longrightarrow Solution:-

We know that,

\log_{x} abc = \log_xa + \log_xb + \log_xc

Therefore,

log_{10} 60 = \log_{10}(2 \times 3 \times 10)

\log_{10} 60 = \log_{10} 2 + \log_{10}3 + \log_{10} 10

From eqn (i) and eqn (ii),

log_{10} 60 = x + y + 1  [ We know that log_{a} a = 1 ]

\longrightarrow Formulas related to logarithms:-

i) \log_x y = z \implies x^z = y

ii) \ln(x) = \log_e x

iii) \log_x(ab) = \log_xa + \log_xb

iv) \log_x\frac{a}{b} = \log_xa-\log_xb

v) \log_aa = 1

vi) \log_{b} a = \dfrac{\log_x a}{\log_x b} = \dfrac{1}{\log_a b}

Similar questions