Math, asked by archisman82, 1 year ago

log 2 base e * log 25 base x = log 16 base 10 * log 10 base e , detect the value of x​

Answers

Answered by riteshbawa3
6

Answer:

Step-by-step explanation:

Attachments:
Answered by abhi178
21
question is ....

log_e2\times log_x25=log_{10}16\times log_e10 then we have to find value of x.

we know from logarithm,

log_ab=\frac{log_cb}{log_ca} where c ≠ 1, c > 0

so, we can write log_e2=\frac{log_{10}2}{log_{10}e}

log_x25=\frac{log_{10}25}{log_{10}x}

log_e10=\frac{log_{10}10}{log_{10}e}=\frac{1}{log_{10}e}

now, using all above resolutions in expression,

\frac{log_{10}2}{log_{10}e}\times\frac{log_{10}25}{log_{10}x}=log_{10}16\times\frac{1}{log_{10}e}

\frac{log_{10}2\times log_{10}25}{log_{10}x}=log_{10}16

\left(\frac{log_{10}2}{log_{10}x}\right)=\frac{log_{10}16}{log_{10}25}

log_x2=log_{25}16

log_x2=log_{5^2}(4^2)

we know, log_{a^m}x^n=\frac{n}{m}log_ax

so, log_{5^2}(4^2)=\frac{2}{2}log_54

so, log_x2=log_54

or, log_x2=log_{(\sqrt{5})^2}(2^2)

or, log_x2=log_{\sqrt{5}}2

comparing both sides,

x = √5
Similar questions