Math, asked by racharla9280, 11 hours ago

Log 2 base x mines Log x base 4

Answers

Answered by LaeeqAhmed
0

 \log_{x}(2)  -   \log_{4}(x)

 \implies  \log_{x}(2)  -   \log_{4}(x)

 \implies  \log_{x}(2)  -   \log_{ {2}^{2} }(x)

 \sf \purple{we \: know \: that}

 \blue {\boxed { \sf  \log_{ {b}^{m} }(a) =  \frac{1}{m} log_{b}(a)   }}

 \implies  \log_{x}(2)  -  \frac{1}{2}   \log_{ {2} }(x)

 \blue{ \boxed{ \sf \log_{a}(b) =  \frac{1}{ log_{b}(a) }  }}

 \implies  \log_{x}(2)  -  \frac{1}{2}   ( \frac{1}{  \log_{x}(2) } )

 \implies  \log_{x}(2)  -  \frac{1}{2  \log_{x}(2) }

Similar questions