Math, asked by GRajyalakshmi, 11 months ago

log 2 with base 5 into log 5 with base 11 into log 11 with best 32 is equal to​

Answers

Answered by pulakmath007
2

\displaystyle \sf{  log_{5}(2) \times log_{11}(5)   \times log_{32}(11)} =  \frac{1}{5}

Correct question :

\displaystyle \sf{  log_{5}(2) \times log_{11}(5)   \times log_{32}(11)}=

Given :

\displaystyle \sf{  log_{5}(2) \times log_{11}(5)   \times log_{32}(11)}

To find :

Simplify the given expression

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf{  log_{5}(2) \times log_{11}(5)   \times log_{32}(11)}

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf{  log_{5}(2) \times log_{11}(5)   \times log_{32}(11)}

\displaystyle \sf =  \frac{log \: 2}{log \: 5} \times  \frac{log \: 5}{log \: 11}  \times \frac{log \: 11}{log \: 32} \:  \:  \: \bigg[ \:  \because \: log_{x}(y)  =  \frac{log \: y}{log \: x}  \bigg]

\displaystyle \sf{ =  \frac{log \: 2}{log \: 32}  }

\displaystyle \sf{ =  \frac{log \: 2}{log \:  {2}^{5} }  }

\displaystyle \sf{ =  \frac{log \: 2}{5log \:  {2}^{} }  }\:  \:  \: \bigg[ \:  \because \: log_{x}( {y}^{m} )  =  mlog_{x}(y)  \bigg]

\displaystyle \sf{ =  \frac{1}{5}   }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

2. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

#SPJ3

Answered by Swati3101
0

Answer:

log_5(2)\times log_{11}(5)\times log_{32}(11) is equal to  \bold{\frac{1}{5} } .

Step-by-step explanation:

The given expression is log_5(2)\times log_{11}(5)\times log_{32}(11)

Now apply  log_x(y)=\frac{log y}{log x}

log_5(2)\times log_{11}(5)\times log_{32}(11)=\frac{log 2}{log 5} \times \frac{log 5}{log 11}\times \frac{log 11}{log 32}

Now cancel the like terms

log_5(2)\times log_{11}(5)\times log_{32}(11)=\frac{log 2}{log 32}

log_5(2)\times log_{11}(5)\times log_{32}(11)=\frac{log 2}{log 2^5}

Now apply the logarithm formula log_x(y^m)=mlog_x(y), we have

log_5(2)\times log_{11}(5)\times log_{32}(11)= \frac{log 2}{5log 2}

log_5(2)\times log_{11}(5)\times log_{32}(11)=\frac{1}{5}

Similar questions