log 2020
please tell me
Answers
Step-by-step explanation:
Given:
\mathsf{log\,2020}log2020
\underline{\textsf{To find:}}
To find:
\textsf{Expansion of}Expansion of
\mathsf{log\,2020}log2020
\underline{\textsf{Solution:}}
Solution:
\underline{\textsf{Concept used:}}
Concept used:
\begin{gathered}\boxed{\begin{minipage}{4cm}$\underline{\textsf{Product rule of logarithm:}}\\\\\mathsf{log\,MN=log\,M+log\,N}$\end{minipage}}\end{gathered}
\textsf{Consider,}Consider,
\mathsf{log\,2020}log2020
\mathsf{=log(2{\times}1010)}=log(2×1010)
\textsf{Using product rule, we get}Using product rule, we get
\mathsf{=log\,2+log\,1010}=log2+log1010
\mathsf{=log\,2+log(2{\times}505)}=log2+log(2×505)
\textsf{Using product rule,}Using product rule,
\mathsf{=log\,2+log\,2+log\,505}=log2+log2+log505
\mathsf{=2\,log\,2+log(5{\times}101)}=2log2+log(5×101)
\textsf{Using product rule,}Using product rule,
\mathsf{=2\,log\,2+log\,5+log\,101}=2log2+log5+log101
\implies\boxed{\mathsf{log\,2020=2\,log\,2+log\,5+log\,101}}⟹
log2020=2log2+log5+log101
Answer:
I can't understand your question
Step-by-step explanation:
plz write correctly 666666543