Math, asked by srinidhis540, 5 months ago

log 2020

please tell me​

Answers

Answered by princess0009ulfat
0

Step-by-step explanation:

Given:

\mathsf{log\,2020}log2020

\underline{\textsf{To find:}}

To find:

\textsf{Expansion of}Expansion of

\mathsf{log\,2020}log2020

\underline{\textsf{Solution:}}

Solution:

\underline{\textsf{Concept used:}}

Concept used:

\begin{gathered}\boxed{\begin{minipage}{4cm}$\underline{\textsf{Product rule of logarithm:}}\\\\\mathsf{log\,MN=log\,M+log\,N}$\end{minipage}}\end{gathered}

\textsf{Consider,}Consider,

\mathsf{log\,2020}log2020

\mathsf{=log(2{\times}1010)}=log(2×1010)

\textsf{Using product rule, we get}Using product rule, we get

\mathsf{=log\,2+log\,1010}=log2+log1010

\mathsf{=log\,2+log(2{\times}505)}=log2+log(2×505)

\textsf{Using product rule,}Using product rule,

\mathsf{=log\,2+log\,2+log\,505}=log2+log2+log505

\mathsf{=2\,log\,2+log(5{\times}101)}=2log2+log(5×101)

\textsf{Using product rule,}Using product rule,

\mathsf{=2\,log\,2+log\,5+log\,101}=2log2+log5+log101

\implies\boxed{\mathsf{log\,2020=2\,log\,2+log\,5+log\,101}}⟹

log2020=2log2+log5+log101

Answered by kashyappriyanshu1619
0

Answer:

I can't understand your question

Step-by-step explanation:

plz write correctly 666666543

Similar questions