Math, asked by pavan9985, 1 year ago

log√27+log8+log√1000/log√120= 3/2

Attachments:

Answers

Answered by pinquancaro
36

Consider the LHS as:

\frac{\log {\sqrt27} + \log 8 + \log \sqrt{1000}}{\log{120}}

= \frac{\log {27^\frac{1}{2}} + \log 2^3 + \log {1000^\frac{1}{2}}}{\log{(2 \times 2 \times 2 \times 3 \times 5)}}

Using the laws of logarithmic which states, \log m^n = n \log m

= \frac{\frac{1}{2} \log(3^3) + \log(2^3) + \frac{1}{2} \log(10^3)}{\log(2^3 \times 3 \times 5)}

= \frac{\frac{3}{2} \log3 + 3 \log(2) + \frac{3}{2} \log(10)}{\log(2^3)+\log3+ \log 5}

= \frac{\frac{3}{2} \log3 + 3 \log(2) + \frac{3}{2} \log(2 \times 5)}{3 \log2+\log3+ \log 5}

= \frac{\frac{3}{2} \log3 + 3 \log2 + \frac{3}{2} (\log2 + \log 5)}{3 \log2+\log3+ \log 5}

= \frac{\frac{3}{2} \log3 + 3 \log2 + \frac{3}{2} \log2 +\frac{3}{2} \log 5}{3 \log2+\log3+ \log 5}

= \frac{\frac{3}{2} \log3 + \frac{9}{2} \log2 +\frac{3}{2} \log 5}{3 \log2+\log3+ \log 5}

= \frac{3}{2}\frac{( \log3 + 3 \log2 + \log 5)}{3 \log2+\log3+ \log 5}

= \frac{3}{2}

=RHS

Hence, proved.

Answered by nikolatesla2
13
hope it helps to u to u to u to u to u to
Attachments:
Similar questions