Math, asked by VARDHAN1871, 6 hours ago

Log 3 base 4 * log 4base 3 + log 32 base 2

Answers

Answered by AestheticSky
95

Given Expression :-

 \\  \quad \bullet \quad \sf  log_{4}(3)  \times  log_{3}(4)  +  log_{2}(32)  \\

Properties To Be Used :-

 \\  \quad  \mapsto \quad \sf  \dfrac{1}{ log_{b}(a) }  =  log_{a}(b)  \\

 \\  \quad \mapsto \quad \sf  log_{a}( {b}^{c} )  = c \times  log_{a}(b)  \\

 \\  \quad \mapsto \quad \sf  log_{a}(a)  = 1 \\

Calculation :-

 \\  \quad \longrightarrow \quad \sf  log_{4}(3)  \times  log_{3}(4)  +  log_{2}(32)  \\

\\  \quad \longrightarrow \quad \sf  \dfrac{1}{ \cancel{ log_{3}(4)} } \times   \cancel{log_{3}(4)}  +  log_{2}( {2}^{5} )  \\

\\  \quad \longrightarrow \quad \sf  1  +  5 \times log_{2}(2)  \\

 \\   \quad \longrightarrow \quad \sf 1 + 5(1) \\

\\   \quad \longrightarrow \quad \sf 1 + 5 \\

  \\ \quad \therefore \quad \boxed{ \frak{6}} \bigstar \\

________________________

Answered by Anonymous
80

Answer:

\footnotesize \implies  log_{4}(3)  \times   log_{4}(3)  +  log_{2}(32)

Important Properties of Log:

\footnotesize \implies  log_{x}(y)   =  \dfrac{1}{ log_{y}(x) }  \: or  \:  \dfrac{ log_{e}(y) }{ log_{e}(x) }

\footnotesize \implies  log_{x}(y)   \times  log_{y}(x)    = 1

\footnotesize \implies  log_{e}( \frac{m}{n} ) =     log_{e}(m)  -  log_{e}(n)

\footnotesize \implies  log_{e}(mn) =  log_{e}(m)  +  log_{e}(n)

\footnotesize \implies  log(m^n) =  n\:log\:m

\footnotesize \implies  log_{a}(a) =  1

Required Solution:

\footnotesize \implies  log_{4}(3)  \times   log_{3}(4)  +  log_{2}(32)

\footnotesize \bullet \: \bf    log_{3}(4)   =  \dfrac{1}{ log_{4}(3) }

\footnotesize \implies  log_{4}(3)  \times    \dfrac{1}{ log_{4}(3) }   +  log_{2}(32)

\footnotesize \implies  1   +  log_{2}(32)

\footnotesize \bullet \: \bf    log_{2}(32)   =  x

\footnotesize \bullet \: \bf     {2}^{x}  = 32

Let x = 5

\footnotesize \bullet \: \bf     {2}^{5}  = 32

Therefore,

\footnotesize \bullet \: \bf    log_{2}(32)   =  5

\footnotesize \implies  1   +  5

\footnotesize \implies \underline{ \boxed{  \red{ 6}}}

Similar questions