Math, asked by mpotdar1, 10 months ago

log (3x+2) - log (3x-2) = log5​

Answers

Answered by Anonymous
7

 \huge \mathbb \orange{ANSWER}

 \bf{ \boxed{ \underline{  \tt{x = 1 \: }}}}}}}

_________________________________

 \sf \huge{Question}

⟹log (3x+2) - log (3x-2) = log5

________________________________

step by step explanation:

 \tt{⟹log(3x + 2) - log(3x - 2) = log5}

using products logarithms

 \tt{⟹log( \frac{3x + 2}{3x - 2}) = log5}

\tt{⟹3x + 2 = 5(3x - 2)}

 \tt{⟹3x + 2 = 15x - 10}

 \tt{⟹ 15x - 3x = 10 + 2}

 \tt{⟹12 = 12x}

 \tt{x = 1}

I hope it's help uh

Answered by Anonymous
14

Answer :

The value of x is 1

Given :

The equation :

  • log(3x + 2) - log(3x - 2) = log5

To Find :

  • The value of x

Formula to be used here :

 \star \bf \log( \frac{x}{y} ) =  \log(x) -  \log(y)

Solution :

 \sf \log(3x + 2) -  log(3x - 2)  =  log(5)  \\  \\  \sf \implies log  \{\dfrac{(3x + 2) }{(3x - 2)} \} =  log(5)  \\  \\   \sf\implies \frac{3x + 2}{3x - 2}  = 5 \\  \\  \sf \implies(3x + 2) = 5(3x - 2) \\  \\  \sf \implies3x + 2 = 15x - 10 \\  \\  \sf \implies3x - 15x =  - 10 - 2 \\  \\  \sf \implies - 12x  = - 12 \\  \\  \sf \implies{x =  \frac{ - 12}{ - 12}} \\  \\  \bf \implies x = 1

Other logarithm formulae :

 \bullet  \bf \:  \:  \log(x.y) =  \log(x) +  log(y)

 \bullet \:  \:  \:  \bf \log {a}^{n}  = n \log(a)

 \bullet \:  \:  \:  \bf log_{a {}^{n} }(b {}^{m} )  =  \dfrac{m}{n}   log_{a}(b)

 \bullet  \:  \:  \:   \bf {a}^{  log_{a}(m) }  = m

Similar questions