English, asked by vedantb298, 6 months ago

log 625 base 4/ log 343 base 243 -log 625 base 8/ log 49 base 243=​

Answers

Answered by aadityaharinair03
22
The answer is zero attached below is how to solve the problem. I am really sorry about my handwriting as it looks like chicken scratch
Attachments:
Answered by probrainsme101
13

Concept:

Change of base rule of logarithms.

logₐ b where a is base.

Now according to the change of base rule, it can be written as,

logₐ b = (log₁₀ b)/(log₁₀ a) or log_e b/log_e a

Given:

log 625 base 4/ log 343 base 243 -log 625 base 8/ log 49 base 243

log₄625/log₂₄₃343 - log₈625/log₂₄₃49

Find:

The value of the given equation.

Solution:

= log₄625/log₂₄₃343 - log₈625/log₂₄₃49

= [\frac{log_{10} 625}{log_{10} 4} \ \div \  \frac{log_{10} 343}{log_{10} 243}] - [\frac{log_{10} 625}{log_{10} 8} \ \div \  \frac{log_{10} 49}{log_{10} 243} ]

= [\frac{log_{10} 625}{log_{10} 4} \ \times \  \frac{log_{10} 243}{log_{10} 343}] - [\frac{log_{10} 625}{log_{10} 8} \ \times \  \frac{log_{10} 243}{log_{10} 49} ]

= [\frac{log_{10} 5^4}{log_{10} 2^2} \ \times \  \frac{log_{10} 3^5}{log_{10} 7^3}] - [\frac{log_{10} 5^4}{log_{10} 2^3} \ \times \  \frac{log_{10} 3^5}{log_{10} 7^2} ]

= [\frac{4 \ log_{10} 5}{2 \ log_{10} 2} \ \times \  \frac{5 \ log_{10} 3}{3 \ log_{10} 7}] - [\frac{4 \ log_{10} 5}{3 \ log_{10} 2} \ \times \  \frac{5 \ log_{10} 3}{2 \ log_{10} 7} ]        [Using log mⁿ = n log m]

= \frac{20 \ log_{10} 5 \ log_{10} 3}{6 \ log_{10} 2 \ log_{10} 7 }  - \frac{20 \ log_{10} 5 \ log_{10} 3}{6 \ log_{10} 2 \ log_{10} 7 }

= 0

Hence, the value of the above equation is 0.

#SPJ2

Similar questions