Math, asked by adityagarg535, 11 months ago

log (6x^2-5x+1) base 1-2x - log (4x^2 -4x+1) base 1-3x = 2​

Answers

Answered by MaheswariS
13

\textbf{Given:}

log_{1-2x}(6x^2-5x+1)-log_{1-3x}(4x^2-4x+1)=2

\textbf{To find:}

\text{The values of x}

\textbf{Solution:}

log_{1-2x}(6x^2-5x+1)-log_{1-3x}(4x^2-4x+1)=2

log_{1-2x}(3x-1)(2x-1)-log_{1-3x}(1-2x)^2=2

log_{1-2x}(1-3x)(1-2x)-2\,log_{1-3x}(1-2x)=2

log_{1-2x}(1-3x)+log_{1-2x}(1-2x)-2\,log_{1-3x}(1-2x)=2

log_{1-2x}(1-3x)+1-2\,log_{1-3x}(1-2x)=2

log_{1-2x}(1-3x)-2\,log_{1-3x}(1-2x)=1

log_{1-2x}(1-3x)-\dfrac{2}{log_{1-2x}(1-3x)}=1

t-\dfrac{2}{t}=1 \text{where $t=log_{1-2x}(1-3x)$}

\dfrac{t^2-2}{t}=1

t^2-t-2=0

(t-2)(t+1)=0

\implies\,t=2,-1

\textbf{when t=2}

log_{1-2x}(1-3x)=2

\implies\,(1-2x)^2=1-3x

1+4x^2-4x=1-3x

4x^2-x=0

x(4x-1)=0

x=0,\frac{1}{4}

\textbf{when t=-1}

log_{1-2x}(1-3x)=-1

\implies\,(1-2x)^-1=1-3x

\dfrac{1}{1-2x}=1-3x

(1-2x)(1-3x)=1

1-5x+6x^2=1

6x^2-5x=0

x(6x-5)=0

x=0,\frac{5}{6}

\text{But x=0 makes base of the logarithm as 1}

\therefore\textbf{The values of x are $\bf\frac{1}{4}$\;\textbf{and}\;$\bf\frac{5}{6}$}

Find more:

x^2 + y^2= 25xy, then prove that 2 log(x+y)=3log3+logx+logy

https://brainly.in/question/477579

If 2log(x-y)=logx +logy, prove that 2log(x+y)= log5+logx +logy

https://brainly.in/question/16912979

Similar questions