Math, asked by shizuoka102, 11 months ago

log 8 to the base 10 +log 25 to the base 10+ 2 log 3 to the base 10 - log 18 to the base 10​

Answers

Answered by shashwat2997
3

Answer:

  • yoeksnskshesishsjejejejhehhshsshzxjxbssisbsksbbsksbssjshsjdsbsusvsshsjsbshsushssuhsaioahasosbsshsvsisvssussbsisvs
Answered by NirmalPandya
3

Complete question: Find the value of the expression: log_{10}8+log_{10}25+2log_{10}3-log_{10}18.

Answer:

The value of the expression is 2.

Given,

An expression: log_{10}8+log_{10}25+2log_{10}3-log_{10}18.

To Find,

The value of the given expression.

Solution,

The method of finding the value of the given expression is as follows -

We know that log_ma+log_mb=log_mab ,  log_ma-log_mb=log_m(\frac{a}{b} ),log_ma^n=nlog_ma, and log_{10}10=1.

Now we need to simplify the given expression.

log_{10}8+log_{10}25+2log_{10}3-log_{10}18=log_{10}(8*25)+log_{10}3^2-log_{10}18=log_{10}(200)+log_{10}9-log_{10}18

=log_{10}(200)+log_{10}\frac{9}{18} =log_{10}(200)+log_{10}\frac{1}{2}

=log_{10}(200*\frac{1}{2} )=log_{10}(100 )=log_{10}10^2

=2log_{10}10=2*1=2

Hence, the value of the expression is 2.

#SPJ2

Similar questions