Math, asked by orugantimanasa18, 8 months ago

( log 9 √3√3√3)log base 10 0.01​

Answers

Answered by akp3039Karthikeyan
21

Answer:

(7/8)^1

Step-by-step explanation:

This is the answer for the question.

Answered by vinod04jangid
2

Answer:

$$\log _{9} \sqrt{3 \sqrt{3 \sqrt{3}}}=\frac{7}{16}

Step-by-step explanation:

Given: $$\log _{9} \sqrt{3 \sqrt{3 \sqrt{3}}}

To find its value.

\log _{9} \sqrt{3 \sqrt{3 \sqrt{3}}}=& \log _{9} \sqrt{3 \sqrt{3 \times 3^{1 / 2}}}\\

                      =& \log \sqrt{3 \sqrt{3^{3 / 2}}} \\=& \log _{3^{2}} \sqrt{3 \times 3^{3 / 4}}\\

                      =& \log _{3}^{2} 3^{7 / 5} \\=& \frac{1}{2} \times \frac{7}{8} 10933\\

                      =& \frac{7}{16} \times 1\\

                      =\frac{7}{16}

#SPJ3

Disclaimer: The correct question is:

Find the value of $$\log _{9} \sqrt{3 \sqrt{3 \sqrt{3}}}.

Similar questions