Math, asked by sooraj75, 1 year ago

log(a/4+b/4) = 1/2(log a+log b) then find the value of a/b + b/a

Answers

Answered by mysticd
16

 Given \: log \Big( \frac{a}{4} + \frac{b}{4}\Big) = \frac{1}{2} ( log \:a + log \:b )

 \implies 2 log \Big( \frac{a+b}{4}\Big) =  log \:a + log \:b

 \implies log \Big( \frac{a+b}{4}\Big)^{2} = log \:(ab)

 \blue {( By \: Logarithmic \: Laws : }}

 \pink { 1. n log a = log a^{n } } \\\orange { 2. log m + log n = log (mn ) }

\implies  \Big( \frac{a+b}{4}\Big)^{2 } = ab

\implies   \frac{(a+b)^{2}}{4^{2}} = ab

 \implies \frac{a^{2} + b^{2} + 2ab }{16} = ab

 \implies a^{2} + b^{2} + 2ab = 16ab

 \implies a^{2} + b^{2}  = 16ab - 2ab

 \implies a^{2} + b^{2} = 14ab

/* Dividing each term by ab , we get */

 \implies \frac{a^{2}}{ab} + \frac{b^{2}}{ab} = \frac{14ab}{ab}

 \implies \frac{a}{b} + \frac{b}{a} = 14

Therefore.,

 \red{ Value \:of \:  \frac{a}{b} + \frac{b}{a}}\green{ = 14}

•••♪

Answered by nikitaagg2001
4

Step-by-step explanation:

thereforevalue of a/b + b/a = 14

Attachments:
Similar questions