Log a/b-c = Log b/c-a = Log c/a-b prove that a^a.b^b.c^c= 1
Answers
Answered by
12
Solution :-
Let
Now,
- log a = k (b - c)
⇒ log₁₀ a = k (b - c)
⇒ a = 10ᵏ ⁽ᵇ ⁻ ᶜ⁾
⇒ a = 10ᵏᵇ ⁻ ᵏᶜ
The question is about aᵃ
⇒ aᵃ = 10ᵏᵃᵇ ⁻ ᵏᵃᶜ
Then,
- log b = k (c - a)
⇒ log₁₀ b = k (c - a)
⇒ b = 10ᵏ ⁽ᶜ ⁻ ᵃ⁾
⇒ b = 10ᵏᶜ ⁻ ᵏᵃ
⇒ bᵇ = 10ᵏᵇᶜ ⁻ ᵏᵃᵇ
Also,
- log c = k (a - b)
⇒ log₁₀ c = k (a - b)
⇒ c = 10ᵏ ⁽ᵃ ⁻ ᵇ⁾
⇒ c = 10ᵏᵃ ⁻ ᵏᵇ
⇒ cᶜ = 10ᵏᵃᶜ ⁻ ᵏᵇᶜ
aᵃ × bᵇ × cᶜ
= (10ᵏᵃᵇ ⁻ ᵏᵃᶜ) × (10ᵏᵇᶜ ⁻ ᵏᵃᵇ) × (10ᵏᵃᶜ ⁻ ᵏᵇᶜ)
= 10ᵏᵃᵇ ⁻ ᵏᵃᵇ ⁻ ᵏᵃᶜ ⁺ ᵏᵃᶜ ⁺ ᵏᵇᶜ ⁻ ᵏᵇᶜ
= 10⁰
= 1
★ HENCE PROVED ★
Answered by
5
⁂ REFER TO ATTACHMENT ⁂
߷ SOME IMPORTANT FORMULAS ߷
LOGARITHMS
1. loga mn = logm + logn.
2.log m/n
= logm – logn.
3. loga mn
= n logm.
4. logba =
log a
log a
log alog b .
5. logaa = 1.
6. loga1 = 0.
7. logba = 1/logab
8. loga1= 0.
9. log (m +n) ≠ logm +logn.
10. e
10. e logx = x.
11. logaax
x
x = x.
꧁BE BRAINLY꧂
THANKS!
Attachments:
Similar questions