Math, asked by anushajain8369, 11 months ago

log (a + ib ) when
a is greater than zero, b is less than zero

Answers

Answered by ashishks1912
2

GIVEN :

log (a + ib ) when  a is greater than zero,and b is greater than zero

TO FIND :

The value of log(a+ib)

SOLUTION :

Given that Log (a+ib)

Let w=x+iy.

Log (a+ib)=w=x+iy.

∴ By laws of logarithm

e^w=e^{x+iy}=e^{log(a+ib)}

e^{x+iy}=e^{log(a+ib)}

By using the properties

a^{m+n}=a^m.a^n and

e^{logx}=x

e^x.e^{iy}=a+ib

e^x(cosy+isiny)=a+ib

e^xcosy+ie^xsiny=a+ib

∴ equating the real & imaginary parts ,we get

a=e^xcosy\hfill (1)

b=e^xsiny\hfill (2)

Now to find  the values of x and y

Squaring the equations (1) & (2)

a^2=e^{2x}cos^2y\hfill (3)

b^2=e^{2x}sin^2y\hfill (4)

Now adding the equations (3) and (4)

a^2+b^2=e^{2x}(cos^2y+sin^2y)

By using the identity

sin^2x+cos^2x=1

a^2+b^2=e^{2x}(1)

a^2+b^2=e^{2x}

Rewritting the equation,

e^{2x}=a^2+b^2  

Taking log on both sides  

log(e^{2x})=log(a^2+b^2)  

By using the property

logx^n=nlogx

2xloge=log(a^2+b^2)  

By using the property

loge=1

2x(1)=log(a^2+b^2)  

x=\frac{1}{2}log(a^2+b^2)  

 Now divide the equation (2) by (1)

\frac{b}{a}=\frac{e^xsiny}{e^xcosy}

\frac{b}{a}=\frac{siny}{cosy}

\frac{b}{a}=tany

tany=\frac{b}{a}

y=tan^{-1}(\frac{b}{a})

​Substitute the values of x and y

log(a+ib)=x+iy

=\frac{1}{2}log(a^2+b^2)+itan^{-1}(\frac{b}{a})

∴ the value is log(a+ib)=\frac{1}{2}log(a^2+b^2)+itan^{-1}(\frac{b}{a})

Similar questions