log a log b
b-CC-a
logc
a-b
then prove that a b c = 1.
Answers
Answered by
3
Answer:
What is meant by b - CC - a
Step-by-step explanation:
FOLLOW ME
Answered by
0
Answer:1
Step-by-step explanation:
Let : ( log a ) / ( b-c ) = ( log b ) / ( c-a ) = ( log c ) / ( a-b ) = k.
∴ ( a. log a ) / a(b-c) = ( b. log b ) / b(c-a) = ( c. log c ) / c(a-b) = k
∴ log (a^a) = k.a(b-c), log (b^b) = k.b(c-a), log (c^c) = k.c(a-b)
∴ [ log (a^a) ] + [ log (b^b) ] + [ log (c^c) ]
. . . . . . . . . = k [ ( ab - ca ) + ( bc - ab ) + ( ca - ab ) ]
∴ log [ (a^a)(b^b)(c^c) ] = 0 = log [ 1 ]
∴ (a^a)(b^b)(c^c) = 1
Similar questions