log a²/bc + log b²/ca + log c²/ab=0
Answers
Answered by
2
Step-by-step explanation:
NOTE :
log (a*b) = loga + logb
log (a/b) = loga - logb
logm^2 = 2logm
SOLUTION :
log a²/bc + log b²/ca + log c²/ab=0
loga^2 - logbc + logb^2 - logca + logc^2- logab =0
=> 2loga-(logb + logc) +2logb-(logc+loga)+ 2logc-(loga+logb) =0
=> 2loga-logb-logc+2logb-logc-loga+2logc-loga-logb = 0
Rearange same alphabet
=> 2loga-loga-loga+2logb-logb-logb+2logc-logc-logc = 0
=> 2loga - 2loga + 2logb - 2logb + 2logc -2logc=0
everything get cancelled inleft hand side.
Hence it is proved that
log a²/bc + log b²/ca + log c²/ab=0
Similar questions