Math, asked by avb28, 1 year ago

log b3 a2 × log c3 b2 log a3 c2 = 8 / 27​

Attachments:

Answers

Answered by ihrishi
8

Step-by-step explanation:

log_ {{b}^{3}} {a}^{2} \times  log_ {{c}^{3}} {b}^{2}  \times log_ {{a}^{3}} {c}^{2} =  \frac{8}{27}  \\\\ LHS = log_ {{b}^{3}} {a}^{2} \times  log_ {{c}^{3}} {b}^{2}  \times log_ {{a}^{3}} {c}^{2}  \\\\ by \: change \: of \: base \: law  : \\  \\=  \frac{log {a}^{2} }{log {b}^{3} }  \times \frac{log {b}^{2} }{log {c}^{3} }  \times \frac{log {c}^{2} }{log {a}^{3} }   \\  \\=  \frac{2log {a} }{3log {b} }  \times \frac{2log {b} }{3log {c}}  \times \frac{2log {c} }{3log {a} }  \:  \\ \\ =  \frac{(2 \times 2 \times 2) \times loga \: logb \: log \: c}{(3 \times 3 \times 3)\times loga \: logb \: log \: c}  \\ \\ =  \frac{8}{27}  \\  \\= RHS \\

Thus proved.

Answered by rinkum4239
1

Step-by-step explanation:

as log(base a)b = logb/loga

so, loga²/logb³×logb²/logc³×logc²/loga³=8/27

LHS,,

2/3×2/3×2/3 = 8/27 = RHS

hence proved...

Similar questions