Math, asked by bangaram1234, 1 year ago

log base 2[log base 2{log base 2(log 81 base 3)}]​

Answers

Answered by pulakmath007
6

\displaystyle \sf{ log_{2}[ log_{2} \{  log_{3}(81) \} ]  } =  \bf \: 1

Correct question : Find the value of

\displaystyle \sf{ log_{2}[ log_{2} \{  log_{3}(81) \} ]  }

Given :

\displaystyle \sf{ log_{2}[ log_{2} \{  log_{3}(81) \} ]  }

To find :

The value of the expression

Formula :

We are aware of the formula on logarithm that

 \sf{1.  \:  \: \:  log( {a}^{n} ) = n log(a)  }

 \sf{2. \:  \:   log_{a}(a)   = 1}

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf{ log_{2}[ log_{2} \{  log_{3}(81) \} ]  }

Step 2 of 2 :

Find the value of the expression

\displaystyle \sf{ log_{2}[ log_{2} \{  log_{3}(81) \} ]  }

\displaystyle \sf{ =  log_{2}[ log_{2} \{  log_{3}( {3}^{4} ) \} ]  }

\displaystyle \sf{ =  log_{2}[ log_{2} \{ 4 log_{3}( {3}^{} ) \} ]  }\:  \:  \: \bigg[ \:  \because \:log( {a}^{n} ) = n log(a) \bigg]

\displaystyle \sf{ =  log_{2}[ log_{2}(4  \times 1 )  ]  }\:  \:  \: \bigg[ \:  \because \: log_{a}(a)   = 1\bigg]

\displaystyle \sf{ =  log_{2}[ log_{2}(4   )  ]  }

\displaystyle \sf{ =  log_{2}[ log_{2}( {2}^{2} )  ]  }

\displaystyle \sf{ =  log_{2}[2 log_{2}(2 )  ]  }\:  \:  \: \bigg[ \:  \because \: log( {a}^{n} ) = n log(a)\bigg]

\displaystyle \sf{ =  log_{2}[2  \times 1  ]  }\:  \:  \: \bigg[ \:  \because \: log_{a}(a) = 1  \bigg]

\displaystyle \sf{ =  log_{2}(2 ) }\:

\displaystyle \sf{ =  1 }\:  \:  \: \bigg[ \:  \because \: log_{a}(a) = 1  \bigg]

\displaystyle \sf{  \therefore \:  \: log_{2}[ log_{2} \{  log_{3}(81) \} ]  } =  \: 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

2. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

#SPJ3

Answered by parulsehgal06
0

Answer:

 The value of log_{2}(log_{2}(log_{2 }(log_{3}81))) is  0.

Step-by-step explanation:

logarithm formulas:

  • Some of the logarithm formulas are given below  

           loga^{n}=nloga

           log_{a} {a = 1

  •  Now apply above formulas to log_{2}(log_{2}(log_{2 }(log_{3}81)))  

               log_{2}(log_{2}(log_{2 }(log_{3}81)))\\

           =log_{2}(log_{2}(log_{2 }(log_{3}3^{4} )))

           =log_{2}(log_{2}(log_{2 }(4log_{3}3 )))

           =log_{2}(log_{2}(log_{2 }4 ))

           =log_{2}(log_{2}(log_{2 }2^{2}  ))

           =log_{2}(log_{2}(2log_{2 }2  ))

           =log_{2}(log_{2}2 )

           =log_{2}1

           =0

Hence , log_{2}(log_{2}(log_{2 }(log_{3}81)))=0

To know more about logarithms go to the link:

https://brainly.in/question/2263417?referrer=searchResults

Similar questions