Math, asked by Bantishaikh842, 10 months ago

Log (base 7) 2 + log (base 49) x = log (base 1/7) sqrt 3

Answers

Answered by manthanpatel0017
0

Answer:

(log \sqrt5 to \: the \: base \: of \: 7\: (log \: 49 \: to \: the \: base \: of \: 5)

Answered by payalchatterje
0

Answer:

Required value of x is  \frac{ \sqrt{2} }{6}

Step-by-step explanation:

Given,

 log_{7}(2)  +  log_{49}(x)   =  log_{ \frac{1}{7} }( \sqrt{3} )  \\  \frac{ log(2) }{ log(7) }  +   \frac{ log(x) }{ log(49) }  =  \frac{ log( \sqrt{3} ) }{ log( \frac{1}{7} ) }  \\ \frac{ log(2) }{ log(7) }  +   \frac{ log(x) }{ log( {7}^{2} ) } =  \frac{ log( \sqrt{3} ) }{  - log(7) }  \\ \frac{ log(2) }{ log(7) }  +   \frac{ log(x) }{ 2log(7) } =  - \frac{ log( \sqrt{3} ) }{   log(7) } \\  \frac{ 2log(2) +  log(x)  }{2 log(7) }  = -  \frac{ log( \sqrt{3} ) }{   log(7) } \\ 2log(2) +  log(x)  =  - 2 log( \sqrt{3} )  \\  log(x)  =  - 2 log( \sqrt{3} )  - 2 log(2)  \\  log(x)  =  - 2(log( \sqrt{3} )   + log(2)) \\  log(x)  =  - 2 log(2 \times  \sqrt{3} )  \\  log(x)  =  -  log( \sqrt{2 \sqrt{3} } )  \\  log(x)  =  log( \frac{1}{3 \sqrt{2} } )  \\ x =  \frac{1}{3 \sqrt{2} }

Therefore,

x =  \frac{1}{3 \sqrt{2} }  \\ x =  \frac{ \sqrt{2} }{3 \sqrt{2} \times  \sqrt{2}  }  \\ x =  \frac{ \sqrt{2} }{3 \times 2}  \\ x =  \frac{ \sqrt{2} }{6}

Here applied formulas are

log_{x}(y)  =  \frac{ log(x) }{ log(y) }  \\ log( {x}^{y} )  = y log(x)  \\ log(x)  +  log(y)  =  log(xy)

Know more about logarithm, https://brainly.in/question/21862262

https://brainly.in/question/4881267

#SPJ2

Similar questions