Math, asked by aroraparth729, 9 months ago

log base(7-4√3)^(7+4√3)​

Answers

Answered by sureshs2468pcl5g8
0

Step-by-step explanation:

The value of a=97 and b=-56.

Step-by-step explanation:

Given : \frac{7-4\sqrt{3}}{7+4\sqrt{3}}=a+b\sqrt{3}

7+4

3

7−4

3

=a+b

3

To find : The value of a and b?

Solution :

We solve the given expression LHS by rationalizing,=

7+4

3

7−4

3

×

7+4

3

7−4

3

Applying property, (a-b)(a+b)=a^2-b^2(a−b)(a+b)=a

2

−b

2

=\frac{(7-4\sqrt{3})^2}{7^2-(4\sqrt{3})^2}=

7

2

−(4

3

)

2

(7−4

3

)

2

=\frac{49+48-56\sqrt3}{49-48}=

49−48

49+48−56

3

=\frac{49+48-56\sqrt3}{1}=

1

49+48−56

3

=97-56\sqrt3=97−56

3

On comparing with RHS,

a+b\sqrt{3}=97-56\sqrt3a+b

3

=97−56

3

a=97 and b=-56

Therefore, The value of a=97 and b=-56.

Answered by eklavyagautam20
0

Answer:

kvifhfishfkdhfidufishfskhfishdoahwoahwsofjs

Similar questions