Math, asked by laasyanekkanti9, 10 months ago

log base a 2 = m and logbase a 5 = n where 0 < a is not equal to 1 then log base a 500 =

Answers

Answered by Raja395
1

Answer:

2m + 3n

Step-by-step explanation:

 log_{a}(2)  \:  =  \: m \\  log_{a}(5)  \:  =  \: n \\ find \:   log_{a}(500)  \:  =  \:  ? \\  \\  log_{a}(500)  \:  =  \:  log_{a}(5 \times 5 \times 5 \times 2 \times 2)  \\ log_{a}(500)  \:  =  \:  log_{a}( {5}^{3}  \:  \times  \: {2}^{2} )  \\ log_{a}(500)  \:  =  \:  log_{a}( {5}^{3} )  \:  +  \:  log_{a}( {2}^{2} )  \\ log_{a}(500)  \:  =  \: 3 \:  log_{a}(5)  \:  +  \: 2 \:  log_{a}(2)  \\ log_{a}(500)  \:  =  \: 3 \times  (n)  \: +  \: 2 \times (m) \\ log_{a}(500)  \:  =  \:3n \:  +  \: 2m

Thanks!

Similar questions