Math, asked by RiyaDaGreat, 10 months ago

log(base a) 4 + log(base a) 16 + log(base a) 64 + log(base a)256 = 10 Then a =?

Answers

Answered by ritulagarwal17
2

Answer:

a is 4

pls see the ans in pic

as log a +log b = log(ab)

we can see the ans

Attachments:
Answered by pulakmath007
1

The value of a = 4

Given :

\displaystyle \sf{  log_{a} \:4 + log_{a} \:16 + log_{a} \:64 +log_{a} \:256 = 10    }

To find :

The value of a

Solution :

Step 1 of 2 :

Write down the given equation

The given equation is

\displaystyle \sf{  log_{a} \:4 + log_{a} \:16 + log_{a} \:64 +log_{a} \:256 = 10    }

Step 2 of 2 :

Find the value of a

\displaystyle \sf{  log_{a} \:4 + log_{a} \:16 + log_{a} \:64 +log_{a} \:256 = 10    }

\displaystyle \sf{ \implies   log_{a} \:(4  \times 16  \times 64  \times 256) = 10    }

\displaystyle \sf{ \implies   log_{a} \:( {4}^{1}   \times   {4}^{2}  \times  {4}^{3}   \times  {4}^{4} ) = 10    }

\displaystyle \sf{ \implies   log_{a} \:( {4}^{1 + 2 + 3 + 4}  ) = 10    }

\displaystyle \sf{ \implies   log_{a} \:( {4}^{10}  ) = 10    }

\displaystyle \sf{ \implies   10 \: log_{a} \:4 = 10    }

\displaystyle \sf{ \implies    log_{a} \:4 = 1   }

\displaystyle \sf{ \implies    log_{a} \:4 =  log_{4} \: 4    }

\displaystyle \sf{ \implies    a =  4    }

Hence the required value of a = 4

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

2. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

Similar questions