Math, asked by nksnares9828, 5 months ago

log cos2x ka definite intigral​

Attachments:

Answers

Answered by Anonymous
26

Given Integrand,

 \displaystyle \sf \: l = \int _{0}^{\frac{\pi}{2}}  log(cos2x)dx -  -  -  -  - (1)

We know that,

 \displaystyle \sf\int _{0}^{a}  f(x)dx = \displaystyle \sf\int _{0}^{a}  f(a - x)dx

Thus,

 \longrightarrow  \displaystyle \sf \: l = \int _{0}^{\frac{\pi}{2}}  log(cos \big( \dfrac{\pi}{2} - 2x \big))dx \\  \\  \longrightarrow  \displaystyle \sf \: l = \int _{0}^{\frac{\pi}{2}}  log(sin2x)dx  -  -  -  -  -  - (2)

Adding equations (1) and (2),

 \displaystyle \sf \: 2l = \int _{0}^{\frac{\pi}{2}}  log(cos2x)dx  +  \int _{0}^{\frac{\pi}{2}}  log(sin2x)dx \\  \\ \longrightarrow \:  \displaystyle \sf \: 2l = \int _{0}^{\frac{\pi}{2}}   \bigg[log(sin2x)+ log(cos2x)  \bigg] dx   \\  \\   \longrightarrow \:  \displaystyle \sf \: 2l = \int _{0}^{\frac{\pi}{2}}  log(sin2x.cos2x)dx   \\  \\  \longrightarrow \:  \displaystyle \sf \: 2l = \int _{0}^{\frac{\pi}{2}}  log( \dfrac{2sin2xcos2x}{2} )dx \\  \\  \longrightarrow \:  \displaystyle \sf \: 2l = \int _{0}^{\frac{\pi}{2}}  log( \dfrac{sin4x}{2})dx \\  \\ \longrightarrow \:  \displaystyle \sf \: 2l = \int _{0}^{\frac{\pi}{2}}  log(sin4x)dx -    \int _{0}^{\frac{\pi}{2}}log(2)dx

Let t = 4x, differentiating w.r.t x :

 \sf \:  \dfrac{dt}{4}  = dx

When x = 0, t = 0

When x = π/2, t = 2π

\longrightarrow \:  \displaystyle \sf \: 2l =  \dfrac{1}{4} \int _{0}^{2\pi}  log(sint)dt -    log(2)\int _{0}^{ \frac{\pi}{2} }dx  \\  \\  \longrightarrow \:  \displaystyle \sf \: 2l =  \dfrac{1}{4} \int _{0}^{2\pi}  log(sint)dt -  \dfrac{\pi log(2) }{2} \\ \\ \longrightarrow \sf 2l = l - \dfrac{\pi log(2)}{2} \\ \\  \longrightarrow \boxed{\boxed{\sf l = - \dfrac{\pi log(2)}{2}}}


Cosmique: wow!! ٩ʕ◕౪◕ʔو
Rythm14: Awesomee! :shocked:
TheValkyrie: Great :D
Similar questions