Math, asked by PremJaicker, 11 months ago

- log
+ log
-log 7 #
#:​

Attachments:

Answers

Answered by AbhijithPrakash
9

Answer:

\displaystyle\log _{10}\left(\frac{11}{5}\right)+\log _{10}\left(\frac{14}{3}\right)-\log _{10}\left(\frac{22}{15}\right)=\log _{10}\left(7\right)\quad \left(\mathrm{Decimal:\quad }\:0.84509\dots \right)

Step-by-step explanation:

\displaystyle\log _{10}\left(\frac{11}{5}\right)+\log _{10}\left(\frac{14}{3}\right)-\log _{10}\left(\frac{22}{15}\right)

\gray{\mathrm{Apply\:log\:rule}:\quad \log _c\left(a\right)+\log _c\left(b\right)=\log _c\left(ab\right)}

\displaystyle\gray{\log _{10}\left(\frac{11}{5}\right)+\log _{10}\left(\frac{14}{3}\right)=\log _{10}\left(\frac{11}{5}\cdot \frac{14}{3}\right)}

\displaystyle=\log _{10}\left(\frac{11}{5}\cdot \frac{14}{3}\right)-\log _{10}\left(\frac{22}{15}\right)

\displaystyle\gray{\frac{11}{5}\cdot \frac{14}{3}=\frac{154}{15}}

\displaystyle=\log _{10}\left(\frac{154}{15}\right)-\log _{10}\left(\frac{22}{15}\right)

\displaystyle\gray{\mathrm{Apply\:log\:rule}:\quad \log _c\left(a\right)-\log _c\left(b\right)=\log _c\left(\frac{a}{b}\right)}

\gray{\log _{10}\left(\dfrac{154}{15}\right)-\log _{10}\left(\dfrac{22}{15}\right)=\log _{10}\left(\dfrac{\dfrac{154}{15}}{\dfrac{22}{15}}\right)}

=\log _{10}\left(\dfrac{\dfrac{154}{15}}{\dfrac{22}{15}}\right)

\gray{\dfrac{\dfrac{154}{15}}{\dfrac{22}{15}}=7}

=\log _{10}\left(7\right)

Similar questions