Math, asked by tutulmanai1988, 1 day ago

log m+n/7= 1/2( log m+ log n). m/n+n/m=47

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:log\bigg[\dfrac{m + n}{7} \bigg] = \dfrac{1}{2} \bigg(logm +logn \bigg)

can be rewritten as

\rm :\longmapsto\:2 \: log\bigg[\dfrac{m + n}{7} \bigg] = logm +logn

We know that

\boxed{\tt{ logx + logy = logxy \: }}

and

\boxed{\tt{ log {x}^{y} = y \: logx \: }}

So, using this, we get

\rm :\longmapsto\:log {\bigg[\dfrac{m  +  n}{7} \bigg]}^{2}  = logmn

\rm :\longmapsto\:{\bigg[\dfrac{m  +  n}{7} \bigg]}^{2}  = mn

\rm :\longmapsto\:\dfrac{ {m}^{2}  +  {n}^{2}  + 2mn}{49}  = mn

\rm :\longmapsto\: {m}^{2} +  {n}^{2} + 2mn = 49mn

\rm :\longmapsto\: {m}^{2} +  {n}^{2}= 49mn - 2mn

\rm :\longmapsto\: {m}^{2} +  {n}^{2}= 47mn

\rm :\longmapsto\:\dfrac{ {m}^{2}  +  {n}^{2} }{mn} = 47

\rm :\longmapsto\:\dfrac{ {m}^{2}  }{mn} + \dfrac{ {n}^{2} }{mn}  = 47

\rm :\longmapsto\:\dfrac{m}{n}  + \dfrac{n}{m}  = 47

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore More

\boxed{\tt{ logx + logy = logxy \: }}

\boxed{\tt{ logx - logy = log \frac{x}{y} \: }}

\boxed{\tt{  log_{x}(y) =  \frac{logy}{logx} \: }}

\boxed{\tt{  log_{x}(x) =  1 \: }}

\boxed{\tt{  log_{ {x}^{n} }( {x}^{m} ) =   \frac{m}{n}  \: }}

\boxed{\tt{  log_{ {x}^{n} }( {y}^{m} ) =   \frac{m}{n}  log_{x}(y)  \: }}

\boxed{\tt{  {m}^{ log_{m}(x) }  = x \: }}

\boxed{\tt{  {m}^{ ylog_{m}(x) }  =  {x}^{y} \: }}

\boxed{\tt{  {e}^{logx}  = x \: }}

Answered by Diliptalapda
0

Answer:

 \mathtt{ \implies \:  log( \frac{m + n}{7} )  =  log( \sqrt{mn} ) }

 \mathtt{taking \: antilog \:  \frac{m + n}{7}  =  \sqrt{mn} }

 \mathtt{on \: sqaring \: {m + n}^{2}   = (7 \sqrt{ mn} )^{2} }

 \mathtt{  \implies \: {m}^{2} +  {n}^{2}  + 2mn = 49mn }

 \mathtt{ \implies \:  \frac{ {m}^{2} +  {n}^{2}  + 2mn }{mn}  = 49}

 \mathtt{ \implies \:  \frac{m}{n} +  \frac{n}{n}  + 2 = 49 }

 \mathtt{ \implies \: \frac{m}{n}  +  \frac{n}{m}  = 47 }

 \mathtt{ \: hence \: proved}

Similar questions