Log(m/n)+log(n/m) =log(m+n)
Answers
Answered by
0
Answer:
*/
\implies logmn = log(m+n)⟹logmn=log(m+n)
\implies mn = (m+n)⟹mn=(m+n)
\implies \frac{mn}{mn}=\frac{m}{mn}+\frac{n}{mn}⟹
mn
mn
=
mn
m
+
mn
n
\implies 1 = \frac{1}{n}+\frac{1}{m}⟹1=
n
1
+
m
1
\implies 1-\frac{1}{n}=\frac{1}{m}⟹1−
n
1
=
m
1
\implies \frac{(n-1)}{n}=\frac{1}{m}⟹
n
(n−1)
=
m
1
\implies \frac{n}{(n-1)}=m⟹
(n−1)
n
=m
Therefore,
m = \frac{n}{(n-1)}m=
(n−1)
n
Similar questions