Math, asked by smk3624, 1 year ago

log (p^2/qr) + log (q^2/pr) + log(r^2/pq) = 0​

Answers

Answered by hukam0685
2

It has been proved that

 \bf \: log \left( \frac{ {p}^{2} }{qr}  \right)  + log \left( \frac{ {q}^{2} }{pr} \right ) + log \left( \frac{ {r}^{2} }{pq}  \right) = 0 \\

Given:

  •  log \left( \frac{ {p}^{2} }{qr}  \right)  + log \left( \frac{ {q}^{2} }{pr} \right ) + log \left( \frac{ {r}^{2} }{pq}  \right) = 0 \\

To find:

  • Prove the equation.

Solution:

Formula to be used:

  1. \bf log \left( \frac{ m }{n}  \right)  =  log(m)  -  log(n)  \\
  2. \bf log \left( mn  \right)  =  log(m)   +  log(n)  \\
  3.  \bf log( {n}^{m} )  = m log(n)  \\

Step 1:

Simplify the LHS by applying rule 1.

log ({p}^{2})   -  log(qr)  + log( {q}^{2})   -  log(pr) + log( {r}^{2} )  -  log(pq) = 0 \\

Step 2:

Apply rule 1 and 3.

2log ({p})   - ( log(q) +  log(r)  )+ 2log ({q})   - ( log(p) +  log(q)  ) + 2log ({r})   - ( log(p) +  log(q)  )= 0 \\

Open the brackets and simplify.

2log ({p})   - log(q)  -  log(r)  + 2log ({q})   -  log(p)  -   log(q)   + 2log ({r})   -  log(p)  -   log(q)  = 0 \\

Add the similar terms.

2log ({p})   -2 log(p)   + 2log ({q})   -  2log(q)  + 2log ({r})   - 2 log(r)   = 0 \\

Cancel the similar terms having opposite signs.

 \cancel{2log ({p})}   -\cancel{2 log(p) }  +\cancel{2log ({q}) }  - \cancel{ 2log(q)}  +\cancel{2log ({r})  } - \cancel{2 log(r) }  = 0 \\

0 = 0 \\

LHS= RHS

Thus,

It has been proved that \bf log \left( \frac{ {p}^{2} }{qr}  \right)  + log \left( \frac{ {q}^{2} }{pr} \right ) + log \left( \frac{ {r}^{2} }{pq}  \right) = 0 \\

Learn more:

1) what is the answer

log2 (4x)-log2 (x-5)= log2 8

https://brainly.in/question/27808466

2) Express 8×32 in the form logx+logy

https://brainly.in/question/7599019

#SPJ2

Answered by pulakmath007
1

\displaystyle \sf  log\bigg( \frac{ {p}^{2} }{qr} \bigg) + log\bigg( \frac{ {q}^{2} }{pr} \bigg) + log\bigg( \frac{ {r}^{2} }{pq} \bigg) = 0 \:  \: is \: proved

Given :

\displaystyle \sf  log\bigg( \frac{ {p}^{2} }{qr} \bigg) + log\bigg( \frac{ {q}^{2} }{pr} \bigg) + log\bigg( \frac{ {r}^{2} }{pq} \bigg) = 0

To find :

The expression

Formula Used :

We are aware of the formula on logarithm that

 \sf{\:  log(ab) =  log(a)   +  log(b) }

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf  log\bigg( \frac{ {p}^{2} }{qr} \bigg) + log\bigg( \frac{ {q}^{2} }{pr} \bigg) + log\bigg( \frac{ {r}^{2} }{pq} \bigg) = 0

Step 2 of 2 :

Prove the expression

\displaystyle \sf  log\bigg( \frac{ {p}^{2} }{qr} \bigg) + log\bigg( \frac{ {q}^{2} }{pr} \bigg) + log\bigg( \frac{ {r}^{2} }{pq} \bigg)

\displaystyle \sf   = log\bigg( \frac{ {p}^{2} }{qr} \times  \frac{ {q}^{2} }{pr}  \times \frac{ {r}^{2} }{pq} \bigg) \:  \:  \: \bigg[ \:  \because \: log(ab) =  log(a)   +  log(b)\bigg]

\displaystyle \sf   = log\bigg( \frac{ {p}^{2} \times  {q}^{2}  \times  {r}^{2}  }{qr \times pr \times pq}  \bigg)

\displaystyle \sf   = log\bigg( \frac{ {p}^{2} \times  {q}^{2}  \times  {r}^{2}  }{{p}^{2} \times  {q}^{2}  \times  {r}^{2}  }  \bigg)

\displaystyle \sf   = log \: 1

 = 0

Hence the proof follows

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

2. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

#SPJ2

Similar questions