Math, asked by khushi52179, 3 months ago

log√q(p^2).log√r(q^2).log√p(r^2)=64​

Answers

Answered by tanmayrly3357
2

Answer:

log√q(p^2).log√r(q^2).log√p(r^2)=64

Answered by pinankpanchal607
2

Answer:

sorry for answering so late but I hope it helps

Step-by-step explanation:

lhs =  log_{ \sqrt{q} }( {p }^{2} )  + log_{ \sqrt{r} }( {q }^{2} ) +  log_{ \sqrt{p} }( {r }^{2} )  \\

 =  \:  \frac{ log \: {p}^{2}  \: }{ log(   \sqrt{q} ) }  +  \frac{ log \: {q}^{2}  \: }{ log(   \sqrt{r} ) }  +  \frac{ log \: {r}^{2}  \: }{ log(   \sqrt{p} ) }

 =  \frac{ log( {p}^{2} ) }{ log( \ \:  {q}^{ \frac{1}{2} } ) }  + \frac{ log( {q}^{2} ) }{ log( {r}^{ \frac{1}{2} } ) }  + \frac{ log( {r}^{2} ) }{ log( {p}^{ \frac{1}{2} } ) }....... (because \:  \sqrt{x }  =  {x}^{ \frac{1}{2} } )

 =  \:  \frac{2  \: log \: p }{ \frac{1}{2}  \times  log(q) }  \times  \frac{2 log(q) }{ \frac{1}{2}  \times  log(r)}  \times  \frac{2 log(r) }{ \frac{1}{2}  \times  log(p)}

cutting \: log \: p \: from \: log \: p \: and \: same \: to \: others

 =  \:  \frac{2}{ \frac{1}{2} }  \times  \frac{2}{ \frac{1}{2} }  \times  \frac{2}{ \frac{1}{2} }

 =  \: 4 \times 4 \times 4 = 64

HENCE PROVED.......

PLS MARK ME AS BRAINLIEST AN DONT FORGET TO FOLLOW

Similar questions