Math, asked by Drishit558, 9 months ago

(log root 27 + log 8 + log root 1000)÷ log 120

Answers

Answered by ITzBrainlyGuy
9

ANSWER:

 \small{ \sf{ \frac{log \:  \sqrt{27} + log \: 8 + log \sqrt{1000}  }{log  \: 120} }}

 \small {\sf{ =  \frac{log3 \sqrt{3} + log8 + log10. {10}^{ \frac{1}{2} }  }{log120} }}

 \small {\sf{ =  \frac{log3 \sqrt{3} + log8  + log {10}^{ \frac{3}{2} } }{log120}}}

 =  \small{ \sf{ \frac{log3 \sqrt{3 }+ log8 +  \frac{3}{2}log10 } {log120} }}

Using log_a (a) = 1

  = \small{ \sf{ \frac{log3 \sqrt{3} + log8 +  \frac{3}{2}  }{log120} }}

write all the numerators above the common denominator

 \small{ \sf{ =  \frac{2log3 \sqrt{3} +2 log8 + 3 }{2log120} }}

We know that

 \small{ \sf{2log \: a = log {a}^{2}  }}

 \small{ \sf{ =  \frac{log {(3 \sqrt{3}) }^{2}  + log {8}^{2}  +  {3} }{2log120} }}

 \small{ \sf{ =  \frac{log27 + log64 + {3} }{2log120} }}

 \small{ \sf{ =  \frac{log27 + log64 + 3log10}{2log120} }}

 \small { \sf{= \frac{log27 + log64 + log {10}^{3} }{2log120}  }}

Using

log a + log b + log c = log(abc)

 \small{ \sf{ \frac{log(27 \times 64  \times  {10}^{3}) }{2log120}   =  \frac{1}{2} \times \frac{log(27 \times 64 \times  {10}^{3} )}{log120} }}

Using

 \frac{ \log \: a}{ \log \: b}  =   \log_{b}(a)

 \small{ \sf{ =  \frac{1}{2} \times  {log_{120} (1728 \times  {10}^{3}) }  }}

 \small{ \sf{ \to \:  \frac{  log_{120} {120}^{3} }{2}  =  \frac{3}{2} }}

Hence,

 \to \small{ \bf{ \frac{log \sqrt{27}  + log8 + log \sqrt{1000} }{log120}  =  \frac{3}{2} }}

Answered by Saby123
3

\dfrac{log3 \sqrt{3} + log8 + log10. {10}^{ \frac{1}{2} } }{log120} } \\ \\\dfrac{log3 \sqrt{3} + log8 + log {10}^{ \frac{3}{2} } }{log120}  \\ \\ \dfrac{log3 \sqrt{3 }+ log8 + \frac{3}{2}log10 } {log120}  \\\\\dfrac{log3 \sqrt{3} + log8 + \frac{3}{2} }{log120} \\ \\ \dfrac{2(log3 \sqrt{3} + log8 + \frac{3}{2}) }{ \frac{2}{log120} }\\ \\</p><p>\dfrac{2log3 \sqrt{3} +2 log8 + 3 }{2log120} } \\ \\\dfrac{log {(3 \sqrt{3}) }^{2} + log {8}^{2} + {3} }{2log120}  \\ \\ \dfrac{log27 + log64 + {3} }{2log120} \\  \dfrac{log27 + log64 + 3log10}{2log120} \\ \\ \dfrac{log \sqrt{27} + log8 + log \sqrt{1000} }{log120} \\ \\ = \dfrac{3}{2}

Similar questions