Math, asked by sahithyaa21, 1 year ago

log root a to the base b into log cube root b to the base e into log fourth root of c to the base is equal to

Answers

Answered by MaheswariS
3

\textbf{Given:}

\mathsf{log_b\sqrt{a}{\times}log_c\sqrt[3]{b}{\times}log_a\sqrt[4]{c}}

\textbf{To find:}

\textsf{The value of}

\mathsf{log_b\sqrt{a}{\times}log_c\sqrt[3]{b}{\times}log_a\sqrt[4]{c}}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{log_b\sqrt{a}{\times}log_c\sqrt[3]{b}{\times}log_a\sqrt[4]{c}}

\mathsf{=log_ba^\frac{1}{2}{\times}log_cb^\frac{1}{3}{\times}log_ac^\frac{1}{4}}

\mathsf{Using,}

\boxed{\mathsf{log_aM^n=n\;log_aM}}

\mathsf{=\dfrac{1}{2}\;log_ba{\times}\dfrac{1}{3}log_cb{\times}\dfrac{1}{4}log_ac}

\mathsf{=\dfrac{1}{24}\;(log_ba{\times}log_cb{\times}log_ac)}

\mathsf{Using,}

\boxed{\mathsf{log_ab{\times}log_bc=log_ac}}

\mathsf{=\dfrac{1}{24}\;(log_bc{\times}log_cb)}

\mathsf{=\dfrac{1}{24}\;(log_bb)}

\mathsf{=\dfrac{1}{24}\;(1)}

\mathsf{=\dfrac{1}{24}}

\implies\boxed{\mathsf{log_b\sqrt{a}{\times}log_c\sqrt[3]{b}{\times}log_a\sqrt[4]{c}=\dfrac{1}{24}}}

\textbf{Find more:}

Simply log10( 145/8)-log10(3/2)+log10(54/29)​

https://brainly.in/question/33031758

Answered by deepikamr06
0

Answer:

log root a to the base b into log cube root b to the base e into log fourth root of c to the base is equal to

Step-by-step explanation:

1/24

Similar questions