Math, asked by wwwfaizanmalik3, 1 year ago

Log(sin2x)dx limit 0 to pi/4

Answers

Answered by PSN03
9

https://www.quora.com/What-is-the-integration-of-0-to-pi-2-log-sin2x

bro here you will get your answer.

Answered by sonuvuce
12

\boxed{\int_0^{\pi/4} \log(\sin 2x)dx=-\frac{\pi}{4}\log 2}

Step-by-step explanation:

I=\int_0^{\pi/4} \log(\sin 2x)dx

=\int_0^{\pi/4}\log(\sin2(\frac{\pi}{4}-x))dx  (∵ \int_0^a f(x)dx=\int_0^a f(a-x)dx)

=\int_0^{\pi/4}\log(\sin(\frac{\pi}{2}-2x))dx

=\int_0^{\pi/4}\log(\cos 2x)dx

Therefore,

I+I=\int_0^{\pi/4} \log(\sin 2x)dx+\int_0^{\pi/4}\log(\cos 2x)dx

\implies 2I=\int_0^{\pi/4}[\log(\cos 2x)+\log(\sin 2x)]dx

\implies 2I=\int_0^{\pi/4}[\log(\cos 2x\times \sin 2x)]dx  (by log property)

\implies 2I=\int_0^{\pi/4}[\log(\frac{2}{2}\times\cos 2x\times \sin 2x)]dx

\implies 2I=\int_0^{\pi/4}[\log(2\times\cos 2x\times \sin 2x)-\log 2]dx

\implies 2I=\int_0^{\pi/4}[\log(\sin 4x)-\log 2]dx

\implies 2I=\int_0^{\pi/4}\log(\sin 4x)dx-\int_0^{\pi/4}\log 2dx

taking 2x = t

2 dx = dt

When x=0, t=0

When x=\pi/4, t=\pi/2

Thus,

2I=\frac{1}{2}\int_0^{\pi/2}\log(\sin 2t)dt-\log 2 \Bigr|x\Bigr|_0^{\pi/4}

\implies 2I=2\times\frac{1}{2}\int_0^{\pi/4}\log(\sin 2x)dx-\frac{\pi}{4}\log 2

\implies 2I=\int_0^{\pi/4}\log(\sin 2x)dx-\frac{\pi}{4}\log 2

\implies 2I=I-\frac{\pi}{4}\log 2

\implies I=-\frac{\pi}{4}\log 2

Hope this answer is helpful.

Know More in Definite Integration:

Click Here:

https://brainly.in/question/2463861

https://brainly.in/question/5372600

Similar questions