Math, asked by anjalimahali1741, 1 year ago

Log tan 17°+ log tan 37°+log tan 53°+ log tan 73°=

Answers

Answered by MaheswariS
4

\underline{\textbf{Given:}}

\mathsf{\log\,tan\,17^\circ+\log\,tan\,37^\circ+\log\,tan\,53^\circ+\log\,tan\,73^\circ}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{\log\,tan\,17^\circ+\log\,tan\,37^\circ+\log\,tan\,53^\circ+\log\,tan\,73^\circ}

\underline{\textbf{Solution:}}

\underline{\textbf{Product rule:}}

\mathsf{\log(M_1\,M_2\,M_3\,M_4)=\log\,M_1+\log\,M_2+\log\,M_3+\log\,M_4}

\mathsf{Consider,}

\mathsf{\log\,tan\,17^\circ+\log\,tan\,37^\circ+\log\,tan\,53^\circ+\log\,tan\,73^\circ}

\textsf{using product rule of logarithm, we get}

\mathsf{=\log(tan\,17^\circ{\times}tan\,37^\circ{\times}tan\,53^\circ{\times}tan\,73^\circ)}

\mathsf{But}\;\;\boxed{\mathsf{tan\theta=cot(90^\circ-\theta)}}

\mathsf{=\log(tan\,17^\circ{\times}tan\,37^\circ{\times}cot(90^\circ-53^\circ){\times}cot(90^\circ-73^\circ)\;)}

\mathsf{=\log(tan\,17^\circ{\times}\,tan\,37^\circ{\times}\\,cot\,37^\circ{\times}\,cot\,17^\circ\;)}

\textsf{Using}\;\boxed{\mathsf{cot\,\theta=\dfrac{1}{tan\theta}}}

\mathsf{=\log(tan\,17^\circ{\times}tan\,37^\circ{\times}\dfrac{1}{tan\,37^\circ}{\times}\dfrac{1}{tan\,17^\circ}\;)}

\mathsf{=\log(1)}

\mathsf{=0}

\implies\boxed{\mathsf{\log\,tan\,17^\circ+\log\,tan\,37^\circ+\log\,tan\,53^\circ+\log\,tan\,73^\circ=0}}

Similar questions