Math, asked by Jacksonmintu, 1 year ago

log( tan 30°)+log( tan 60°)

Answers

Answered by himanshii
8
hope it helps................
Attachments:
Answered by pulakmath007
0

\displaystyle \sf{log(tan {30}^{ \circ})  +  log(tan {60}^{ \circ})  } =  \bf \: 0

Given :

\displaystyle \sf{log(tan {30}^{ \circ})  +  log(tan {60}^{ \circ})  }

To find :

Simplify the expression

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

\displaystyle \sf{log(tan {30}^{ \circ})  +  log(tan {60}^{ \circ})  }

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf{log(tan {30}^{ \circ})  +  log(tan {60}^{ \circ})  }

\displaystyle \sf{ = log(tan {30}^{ \circ} \times tan {60}^{ \circ})  \:  \:  \: \bigg[ \:  \because \:log \: a + log \: b = log \: (ab) \bigg] }

\displaystyle \sf{  = log\: \bigg( \frac{1}{ \sqrt{3}  }  \times  \sqrt{3}  \bigg)  }

\displaystyle \sf{  = log\: 1 }

 = 0

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

2. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

#SPJ3

Similar questions