Math, asked by madhusree1027, 1 year ago

log(x+√1+x²)/√1+x²,Integrate it with respect to x.

Answers

Answered by Anonymous
4

Answer:

please refer to the attachment

I hope it would help you

thank you

Attachments:
Answered by bestwriters
1

\bold{\int\left(\frac{\log (x+\sqrt{1+x^{2}})}{\sqrt{1+x^{2}}}\right) d x = \frac{[\log (x+\sqrt{x^{2}+1})]^{2}}{2}+c}

Given:

\int\left(\frac{\log (x+\sqrt{1+x^{2}})}{\sqrt{1+x^{2}}}\right) d x

Step-by-step explanation:

\text{Let} \ I = \int\left(\frac{\log (x+\sqrt{1+x^{2}})}{\sqrt{1+x^{2}}}\right) d x

In this integration, we need to use substitution method.

\text{Let} \ t = \log (x+\sqrt{1+x^{2}})}

d t=\frac{1\left(1+\frac{2 x}{2 \sqrt{1+x^{2}}}\right)}{x+\sqrt{1+x^{2}}} d x

\Rightarrow d t=\frac{\left(1+\frac{x}{\sqrt{1+x^{2}}}\right)}{x+\sqrt{1+x^{2}}} d x

\Rightarrow d t=\frac{\frac{\sqrt{1+x^{2}}+x}{\sqrt{1+x^{2}}}}{x+\sqrt{1+x^{2}}} d x

\Rightarrow d t=\frac{\sqrt{1+x^{2}}+x}{\sqrt{1+x^{2}}} \times \frac{1}{x+\sqrt{1+x^{2}}} d x

\therefore d t=\frac{d x}{\sqrt{1+x^{2}}}

Now, on substituting ‘t’ and ‘dt’ in given equation, we get,

\Rightarrow I=\int t d t

\Rightarrow I=\frac{t^{2}}{2}+C

Now, on substituting the ‘t’ in above equation, we get,

\Rightarrow I=\frac{[\log (x+\sqrt{x^{2}+1})]^{2}}{2}+C

\therefore \int\left(\frac{\log (x+\sqrt{1+x^{2}})}{\sqrt{1+x^{2}}}\right) d x = \frac{[\log (x+\sqrt{x^{2}+1})]^{2}}{2}+c

Similar questions