Math, asked by lsl9550803492, 2 months ago

Log (x^2+y^2) =logx+logy+log2, show that x=y

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\mathsf{log(x^2+y^2)=log\,x+log\,y+log\,2}

\underline{\textbf{To prove:}}

\mathsf{x=y}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{log(x^2+y^2)=log\,x+log\,y+log\,2}

\textsf{Using product rule of logarithm,}

\mathsf{log(x^2+y^2)=log(2xy)}

\mathsf{x^2+y^2=2xy}

\mathsf{x^2+y^2-2xy=0}

\mathsf{(x-y)^2=0}

\implies\mathsf{x-y=0}

\implies\boxed{\mathsf{x=y}}

\underline{\textbf{Find more:}}

If 2log(x-y)=logx +logy, prove that 2log(x+y)= log5+logx +logy

https://brainly.in/question/16912979

Similar questions