Math, asked by sawastik949, 5 days ago

log(x+3)-log(x-3)=1 ​

Answers

Answered by shrihankp
1

Answer:

 \dfrac{3\left(e+1\right)}{e-1}

Step-by-step explanation:

Assuming  log is the natural logarithm with base  e , the Euler's constant.

 \log{\left(x+3\right)} - \log{\left(x-3\right)} = 1

 \Rightarrow \log{\dfrac{x+3}{x-3}} = 1 [Using the logarithmic property:  \log{\alpha} - \log{\beta} = \log{\dfrac{\alpha}{\beta}} ]

 \Rightarrow \dfrac{x+3}{x-3} = e

 \Rightarrow x+3 = e\left(x-3\right) = ex - 3e

 \Rightarrow x - ex = -3e - 3

 \Rightarrow \left(1-e\right)x = -3\left(e + 1\right)

 \Rightarrow x = \dfrac{-3\left(e+1\right)}{-\left(e-1\right)} = \boxed{\dfrac{3\left(e+1\right)}{e-1}}

Similar questions