Math, asked by tejasolving, 11 months ago

log(x^3-y^3/7)=log(x-y)+logx+logy . then find x/y+y/x

Answers

Answered by Anonymous
4

Solution :-

 \rm log \bigg( \dfrac{ {x}^{3} -  {y}^{3}  }{7}  \bigg) =log(x - y) +  logx + logy

 \implies \rm log \bigg( \dfrac{ {x}^{3} -  {y}^{3}  }{7}  \bigg) =log(x - y) xy

[ Because, by product rule, log a + log b = log ab ]

Comparing on both sides we get

 \implies \rm \dfrac{ {x}^{3} -  {y}^{3}  }{7}  =(x - y) xy

 \implies \rm \dfrac{(x - y)( {x}^{2}  + xy +  {y}^{2})   }{7xy}  =(x - y)

[ Because x³ - y³ = (x - y) (x² + xy + y²) ]

 \implies \rm \dfrac{ {x}^{2}  + xy +  {y}^{2} }{7xy}  = \dfrac{x - y}{x - y}

 \implies \rm \dfrac{ {x}^{2}  + xy +  {y}^{2} }{7xy}  = 1

 \implies \rm {x}^{2}  + xy +  {y}^{2}  = 7xy

 \implies \rm {x}^{2}  +  {y}^{2}  = 7xy - xy

 \implies \rm {x}^{2}  +  {y}^{2}  = 6xy

Dividing throughout by xy

 \implies \rm   \dfrac{ {x}^{2} }{xy}    +   \dfrac{ {y}^{2} }{xy}   =  \dfrac{6xy}{xy}

 \implies \rm   \dfrac{x}{y}    +   \dfrac{y}{x}   =  6

Therefore the value of x/y + y/x is 6.

Similar questions