Math, asked by sarthakkalyani1620, 2 months ago

log (x cosx) derivative​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y \:  =  \:  log(x \: cosx)

\rm :\longmapsto\:y \:  =  \:  log(x)  +  log(cosx)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf{ \: log(xy)  =  log(x)  +  log(y) }}}

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y \:  = \dfrac{d}{dx}( \:  log(x)  +  log(cosx) )

\rm :\longmapsto\:\dfrac{dy}{dx} \:  = \dfrac{d}{dx} \:  log(x)  + \dfrac{d}{dx} log(cosx)

\rm :\longmapsto\:\dfrac{dy}{dx} \:  = \dfrac{1}{x} \: + \dfrac{1}{cosx} \dfrac{d}{dx}(cosx)

\rm :\longmapsto\:\dfrac{dy}{dx} \:  = \dfrac{1}{x} \: + \dfrac{1}{cosx} ( - sinx)

\bf :\longmapsto\:\dfrac{dy}{dx} \:  = \dfrac{1}{x} \:  - tanx

Additional Information :-

\green{\boxed{ \bf{ \:\dfrac{d}{dx}k = 0}}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}x = 1}}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}sinx = cosx}}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}cosx =  -  \: sinx}}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}cotx =  -  \:  {cosec}^{2} x}}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}tanx = \:  {sec}^{2} x}}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx} \sqrt{x} = \dfrac{1}{2 \sqrt{x} }  }}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}secx = secx \: tanx}}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}cosecx = -   \: cosecx \: cotx}}}

\green{\boxed{ \bf{ \:\dfrac{d}{dx}logx = \dfrac{1}{x} }}}

Similar questions