Math, asked by sdsk11972, 5 months ago

(log x)/(ry-qz)=(log y)/(pz-rx)=(log z)/(qx-py)
, show that x^p*y^q*z^r

Answers

Answered by Anonymous
1

Step-by-step explanation:

Search...

2

Vaskhar10

02.09.2019

Math

Secondary School

answered

If log x/ry-qz=log y/pz-rx=log z/qx-py

2

SEE ANSWERS

Answer

1.0/5

2

ksjxjsj

Helping Hand

2 answers

29 people helped

sorry bro but I need points for hejsjsjsjzjsjsjjsjdjdjdjdd

Step-by-step explanation:

I'm going to try it again the next one more than that and it will support it again KKK you to get

klondikegj and 4 more users found this answer helpful

THANKS

2

1.0

(2 votes)

Answer

5.0/5

5

PrachiVakshi

Helping Hand

3 answers

33 people helped

Answer:

Step-by-step explanation:

log x/(ry-qz)=log y/(pz-rx)=log z/(qx-py)=k

log x =k(ry-qz)

log y=k(pz-rx)

log z=k(qx-py)

x^p*y^q*x^r=A

=> log x^p*y^q*z^r=log A

=>log x^p + log y^q + log z^r = log A

=>p log x + q log y + r log z = log A

=>pk(ry-qz) + qk(pz-rx) + rk(qx-py)=log A

k (pry-pqz+pqz-qrx+qrx-pry)=log A

=>k * 0=log A

=>A=10^0

=>A=0

.°. x^p * y^q * z^r=1

Hence Proved.

Hope you have satisfied with this answer.So please follow me and thank me and make me as brainlesset soon and vote my answer.

Answered by MagicalBeast
3

Question :

\sf If  \:  \dfrac{ log(x) }{(ry - qz)}  \:  =  \:  \dfrac{ log(y) }{(pz - rx)}  =   \:  \dfrac{ log(z) }{(qx -  \: py)}  \:  ,  \: show  \: that  \: (x^p \times y^q \times z^r \:  =  \: 1)

Given :

\sf \bullet \: \: \dfrac{ log(x) }{(ry - qz)}  \:  =  \:  \dfrac{ log(y) }{(pz - rx)}  =   \:  \dfrac{ log(z) }{(qx -  \: py)}

To prove :

\sf \:  x^p \times y^q \times z^r \:  =  \: 1

Identity used :

\sf \bullet  \:  log(ab)  \:  =  \:  log(a)  +  log(b)  \\  \\ \sf \bullet   \:  \: log( \dfrac{a}{b} )  =  log(a)  -  log(b)  \\  \\ \sf \bullet  \:  \:  log( {a}^{m} )  =  m \times log(a) \\  \\  \sf \bullet \:  log(1)  = 0 \\  \\ \sf \bullet \:  If \:   \: log(a) = log(b) \:  ,  \: then \:  a = b

Solution :

\sf  \: \: \dfrac{ log(x) }{(ry - qz)}  \:  =  \:  \dfrac{ log(y) }{(pz - rx)}  =   \:  \dfrac{ log(z) }{(qx -  \: py)} \:  =  \: k \:  \{ \: let \} \\  \\   \sf \bullet \: \: \dfrac{ log(x) }{(ry - qz)}  \:  = k \\ \sf \implies \:  log(x)  = k(ry - qz) \\  \\\sf \: \bullet \:  \: \dfrac{ log(y) }{(pz - rx)}  =   k\: \\  \sf \implies \:  log(y)    =  \: k (pz - rx) \\  \\  \sf \bullet \:  \dfrac{ log(z) }{(qx -  \: py)} \:  =  \: k \\  \sf \implies \:  log(z)  = k(qx - py)

Now. we need to prove

\sf \:  x^p \times y^q \times z^r \:  =  \: 1

LHS ,

\sf \:  x^p \times y^q \times z^r \:  =  \: m \:  \{ \: let \} \\  \\  \sf \: take \: log \: on \: both \: side \\  \\  \sf \implies \:  log(\:  x^p \times y^q \times z^r \: )  =  log(m)  \\  \\  \sf \implies \:  log( {x}^{p} )  +  log( {y}^{q} )  +  log( {z}^{r} )  =  log(m)  \\  \\ \sf \implies \:  \{p \times  log(x) \}  +  \{ \: q \times  log(y)  \} \:  +  \: \{ \: r \times  log(z)  \} \:  =  log(m)

Put value of log(x) , log(y) & log(z) in above equation.

\sf \implies \: \{ \: p \times k(ry - qz) \} \:  +  \:  \{ \: q \times \: k (pz \: -  rx )\:  \} \: +   \{ \: r \times \: k \: (qx \:   - \: py )\:  \} =  log(m )  \\  \\ \sf \implies \: \: k(pry \:  - pqz) \:  +  \: k(qpz -qrx ) + k(rqx -rpy )  =  log(m)  \\  \\ \sf \implies \: k \{pry \:  - pqz +  qpz -qrx + \: rqx -rpy  \} =  log(m) \\  \\ \sf \implies \: k (0) =  log(m)  \\  \\ \sf \implies  \: 0 \:  =  \:  log(m)  \\  \\ \sf \implies  \:  log(1)  =  log(m)  \\  \\  \sf \implies  \: m \:  =  \: 1

Now , RHS = 1

This gives, RHS = LHS

Hence PROVED.

Similar questions