Math, asked by ManasviM, 3 months ago

log(x/x+1)+log(x+1/x+2).. to n terms=​

Attachments:

Answers

Answered by abhi569
5

Question: log(x/x+1) + log(x+1/x+2) + log(x+2/x+3) ... to n terms =

Answer:

\sf{log\large{\frac{x}{x+n}}}

Step-by-step explanation:

 \sf{Using  \: the  \:  property  \: of  \:  logarithms}

  \bold {\sf{ log \frac{a}{b}  = loga \:  -  \: logb}  }\\

 \sf{Therefore, }

 \sf{  \small{log \frac{x}{x + 1}  + log \frac{x + 1}{x + 2} + log \frac{x + 2}{x + 3}  + ... \: n \: terms \: } }  \\

\sf{  \small{log \frac{x}{x + 1}  + log \frac{x + 1}{x + 2} + log \frac{x + 2}{x + 3}  + ... + log \frac{x + (n - 2)}{x + (n - 1)} + log \frac{x + (n - 1)}{x + n}   } } \\

\sf{log x - log(x + 1) + log(x + 1) - log(x + 2)  - log(x + 3) + ...+log(x + (n - 2)) - log(x + (n - 1)) + log(x + (n - 1)) - log(x + n) \:  \: }  \\

\sf{logx  - log(x + n)}  \\

 \sf{log \large{\frac{x}{x + n}}  \: }

Similar questions