Math, asked by srivastavaojasvi2607, 3 months ago

log[x+√x^2-1]+log[x-√x^2-1]=0​

Answers

Answered by anindyaadhikari13
1

Required Answer:-

Correct Question:

  • Prove that log(x + √(x² - 1)) + log(x - √(x² - 1)) = 0

Proof:

Taking LHS,

We know that,

 \sf \implies  \log(x)  +   \log(y)  =   \log(xy)

So,

 \sf   \log(x +  \sqrt{ {x}^{2}  - 1} )  +   \log(x -  \sqrt{ {x}^{2} - 1 } )

 \sf  =   \log \big((x +  \sqrt{ {x}^{2}  - 1} )(x  -  \sqrt{ {x}^{2}  - 1} ) \big)

Using identity (a + b)(a - b) = a² - b², we get,

 \sf  =   \log \big( {(x)}^{2}  -  (\sqrt{ {x}^{2}  - 1} )^{2} \big)

 \sf  =   \log \big( {x}^{2}  -  ({x}^{2}  - 1)\big)

 \sf  =   \log \big( {x}^{2}  - {x}^{2} +  1\big)

 \sf  =   \log \big( 1\big)

Since base is not given, we will consider the base 10 logarithm.

Let log(1) = n

➡ 10ⁿ = 1

➡ 10ⁿ = 10⁰ (As any number except 0 raised to the power 0 is always 1)

➡ n = 0

Hence,

log(1) = 0

= RHS (Proved)

Therefore,

 \sf  \implies\log(x +  \sqrt{ {x}^{2}  - 1} )  +   \log(x -  \sqrt{ {x}^{2} - 1 } )  = 0

Hence Proved.

Answered by BrainlyKingdom
0

\sf{\log _{10}\left(x+\sqrt{x^2-1}\right)+\log _{10}\left(x-\sqrt{x^2-1}\right)}

Apply Log Rule : \bf{\log _c\left(a\right)+\log _c\left(b\right)=\log _c\left(ab\right)}

\sf{=\log _{10}\left(\left(x+\sqrt{x^2-1}\right)\left(x-\sqrt{x^2-1}\right)\right)}

Apply Difference of Two Squares Formula : \bf{(a+b)(a-b)=a^2-b^2}

\sf{=\log _{10}\left(x^2-\left(\sqrt{x^2-1}\right)^2\right)}

\sf{=\log _{10}\left(x^2-\left(x^2-1\right)\right)}

\sf{=\log _{10}\left(x^2-x^2+1\right)}

\sf{=\log _{10}\left(1\right)}

Apply Log Rule : \bf{\log _a\left(1\right)=0}

\sf{=0}

Hence Proved !

Similar questions