Math, asked by chakrabartikushan296, 4 days ago

log (x+y)/5=1/2(logx+logy) then what is x/y+y/x​

Answers

Answered by amansharma264
11

EXPLANATION.

⇒ ㏒(x + y)/5 = 1/2(㏒ x + ㏒ y).

As we know that,

Formula of :

⇒ ㏒ₐN^(α) = α ㏒ₐN (α any real numbers).

Using this formula in the equation, we get.

We can write equation as,

⇒ ㏒(x + y)/5 = (㏒ x + ㏒ y)^(1/2).

⇒ ㏒(x + y)/5 = √(㏒ x + ㏒ y).

⇒ ㏒(x + y)/5 = ㏒ √xy.

⇒ (x + y)/5 = √xy.

⇒ (x + y) = 5√xy.

Squaring on both sides of the equation, we get.

⇒ (x + y)² = (5√xy)².

⇒ x² + y² + 2xy = 25xy.

⇒ x² + y² = 25xy - 2xy.

⇒ x² + y² = 23xy.

⇒ x² + y²/xy = 23.

⇒ (x²/xy) + (y²/xy) = 23.

(x/y) + (y/x) = 23.

                                                                                                                 

MORE INFORMATION.

Properties of logarithms.

Let M and N arbitrary positive numbers such that a > 0, a ≠ 1, b > 0, b ≠ 1 then,

(1) = ㏒ₐMN = ㏒ₐM + ㏒ₐN.

(2) = ㏒ₐ(M/N) = ㏒M - ㏒ₐN.

(3) = ㏒ₐN^(α) = α ㏒ₐN (α any real numbers).

(4) = ㏒ₐ^(β)N^(α) = (α/β)㏒ₐN (α ≠ 0, β ≠ 0).

(5) = ㏒ₐN = ㏒_{b}N/㏒_{b}a.

(6) = ㏒_{b}a . ㏒ₐ b = 1 ⇒ ㏒_{b}a = 1/㏒ₐb.

(7) = e^(㏑a)ˣ = aˣ.

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:log\bigg[\dfrac{x + y}{5} \bigg] = \dfrac{1}{2}\bigg[logx \:  +  \: logy\bigg]

can be rewritten as

\rm :\longmapsto\:2log\bigg[\dfrac{x + y}{5} \bigg] = \bigg[logx \:  +  \: logy\bigg]

We know,

\boxed{ \bf{ \:bloga = log {a}^{b}}}

and

\boxed{ \bf{ \:logx + logy = log(xy)}}

So, using these Identities, we get

\rm :\longmapsto\:log\bigg[\dfrac{x + y}{5} \bigg]^{2}  = \bigg[logxy \bigg]

So, on comparing, we get

\rm :\longmapsto\:\bigg[\dfrac{x + y}{5} \bigg]^{2}  = xy

\rm :\longmapsto\:\dfrac{ {x}^{2}  +  {y}^{2}  + 2xy}{25} = xy

\rm :\longmapsto\: {x}^{2} +  {y}^{2} + 2xy = 25xy

\rm :\longmapsto\: {x}^{2} +  {y}^{2} = 25xy - 2xy

\rm :\longmapsto\: {x}^{2} +  {y}^{2} = 23xy

\rm :\longmapsto\:\dfrac{ {x}^{2} +  {y}^{2}  }{xy} = 23

\rm :\longmapsto\:\dfrac{ {x}^{2} }{xy}  + \dfrac{ {y}^{2} }{xy}  = 23

\bf\implies \:\dfrac{x}{y}  + \dfrac{y}{x}  = 23

Additional Information :-

\boxed{ \bf{ \: log_{x}(x) = 1}}

\boxed{ \bf{ \: log_{ {x}^{y} }( {x}^{z} ) =  \frac{z}{y} }}

\boxed{ \bf{ \: {x}^{ log_{x}(y) } = y}}

\boxed{ \bf{ \: {x}^{z log_{x}(y) } =  {y}^{z} }}

\boxed{ \bf{ \: {e}^{logx} = x}}

\boxed{ \bf{ \: {e}^{ylogx} =  {x}^{y} }}

Similar questions