Math, asked by ramu43, 1 year ago

log(x-y) -log5-1/2logx-1/2logy=0then x/y+y/x =

Answers

Answered by karthik4297
14

 log(x - y)  -  log(5)  - \frac{1}{2}  log(x)  -  \frac{1}{2}  log(y)  = 0 \\  log(x - y)  -  log( \sqrt{x}  ) -  log( \sqrt{y} )  -  log(5)  = 0 \\  log(x - y)  - (  log( \sqrt{x} ) +  log( \sqrt{y} ) ) -  log(5)  = 0 \\  log(x - y)  -  log( \sqrt{x.y} )  =  log(5)  \\  log( \frac{x - y}{ \sqrt{x.y} } )  =  log(5)  \\  \frac{x - y}{ \sqrt{x.y} }  = 5 \\  \frac{x}{ \sqrt{xy} }  -  \frac{y}{ \sqrt{xy} }  = 5 \\  \sqrt{ \frac{x}{y} }  -  \sqrt{ \frac{y}{x} }  = 5 \\ take \: square \: both \: side \:  \\  { (\sqrt{ \frac{x}{y} } -  \sqrt{ \frac{y}{x} } ) }^{2}   =  {5 }^{2}  \\  \frac{x}{y}   +  \frac{y}{x}  - 2. \sqrt{ \frac{xy}{yx} }  = 25 \\  \frac{x}{y}  +  \frac{y}{x}   - 2 = 25 \\  \frac{x}{y}  +  \frac{y}{x}  = 27

ramu43: thanks
ramu43: thank you very much
karthik4297: my pleasure
Similar questions