Math, asked by aha538, 1 year ago

Log(x²-8x) to the base 3 is equal to 2



Find x

Pls explain with method

Answers

Answered by Anonymous
3

HEYA \:  \\  \\ GIVEN \:  \: QUESTION \:  \: Is \:  \:  \\  \\  log_{3}(x {}^{2}  - 8x)  = 2 \\  \\  (x {}^{2}  - 8x) = 3 {}^{2}  \\ becoz \:  \: if \:  \:  \:  log_{y}(z)  = m \:  \:  \: then \:  \: z = y {}^{m}  \\  \\ x {}^{2}  - 8x - 9 = 0 \\  \\ x {}^{2}   -  9x  + 1x - 9 = 0 \\  \\ x(x - 9) + 1(x - 9) = 0 \\  \\ (x + 1) = 0 \:  \:  \: or \:  \:  \: (x - 9) = 0 \\  \\ x =  - 1 \:  \:  \: or \:  \:  \: x = 9

Answered by captainkhan85
11

Step-by-step explanation:

\begin{lgathered}HEYA \: \\ \\ GIVEN \: \: QUESTION \: \: Is \: \: \\ \\ log_{3}(x {}^{2} - 8x) = 2 \\ \\ (x {}^{2} - 8x) = 3 {}^{2} \\ becoz \: \: if \: \: \: log_{y}(z) = m \: \: \: then \: \: z = y {}^{m} \\ \\ x {}^{2} - 8x - 9 = 0 \\ \\ x {}^{2} - 9x + 1x - 9 = 0 \\ \\ x(x - 9) + 1(x - 9) = 0 \\ \\ (x + 1) = 0 \: \: \: or \: \: \: (x - 9) = 0 \\ \\ x = - 1 \: \: \: or \: \: \: x = 9\end{lgathered}

Similar questions