Math, asked by nimmy4123, 10 months ago

log (xy)= x+y find dy/dx​

Answers

Answered by Anonymous
18

Step-by-step explanation:

given here .

log(xy)= (x+y).

Differentiate w.r. to x .

d/dx ( logxy )= d/dx(x+y).

1/xy (y+xdy/dx)= 1+dy/dx.

1/x - 1. = ( -1/y +1 ) dy/dx .

dy/dx = y(1-x)/(y-1)x

Answered by kaushik05
17

 \huge \mathfrak{solution}

Given:

 log(xy)  = x + y

Differentiate both sides w.r.t X

 \leadsto \:  \frac{d}{dx}  log(xy)  =  \frac{d}{dx} (x + y) \\  \\  \leadsto \:  \frac{1}{xy} \times   \frac{d}{dx} (xy) = (1 +  \frac{dy}{dx} ) \\  \\  \leadsto \:  \frac{1}{xy} (x. \frac{dy}{dx}  + y) = (1 +  \frac{dy}{dx})  \\  \\  \leadsto \frac{1}{y}  \frac{dy}{dx}  +  \frac{1}{x}  = (1 +  \frac{dy}{dx})  \\  \\  \leadsto \:  \frac{1}{y}  \frac{dy}{dx}  -  \frac{dy}{dx}  =  1 -  \frac{1}{x}  \\  \\  \leadsto \:  \frac{dy}{dx} ( \frac{1}{y}  - 1) = 1 -  \frac{1}{x}  \\  \\  \leadsto \:  \frac{dy}{dx}  =  \frac{ \frac{x - 1}{x} }{ \frac{1 - y}{y} }  \\  \\  \leadsto \:  \frac{dy}{dx}  =  \frac{y(x - 1)}{x(1 - y)}

Formula:

  \boxed{ \red{ \bold{\frac{d}{dx}  log(x)  =  \frac{1}{x} }}}

  \boxed{ \green{ \bold{\frac{d}{dx} (u.v) = u. \frac{d}{d \: x} (v) + v. \frac{d}{dx} (u)}}}

Similar questions