Math, asked by TbiaSupreme, 1 year ago

log₁₀(10.01),Find approximate value.

Answers

Answered by pulakmath007
9

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO DETERMINE

 \sf{ The \:  approximate \:  value \:  of  \:  \:  \:   log_{10}(10.01) }

CALCULATION

 \sf{Let   \: \: y = f(x) =  log_{10}( x)}

 \sf{Let \: us \:  \:  take \:  \:  \:  x = 10  \:  \: ,   \:  \: \Delta x = 0.01}

Now

 \sf{ f(x)    }

 \sf{ =  log_{10}( x)   }

 \sf{  =  log_{e}(x) \times  log_{10}(e)   }

 \sf{  = log_{e}(x)  \times 0.4343  \:  \: ( \because \:  log_{10}(e)  = 0.4343 \: )  }

 \sf{   \therefore \:  \: f(x)= log_{e}(x)  \times 0.4343   \: }

Differentiating both sides with respect to x we get

 \displaystyle \sf{ f \: '(x)\: =  \frac{0.4343}{x}  }

We know from application of derivatives that

 \sf{ f( x+ \Delta x) = f(x) +  f \: ' (x)\:\Delta x }

Putting the values we get

 \sf{ f(10 + 0.01) = f(10) +  \: f \: ' (10)  \times 0.01\: }

 \displaystyle \:  \implies \:  \sf{ f(10.01) =  log_{10}(10)  +  \:  \frac{0.4343}{10}  \times 0.01\: }

 \displaystyle \:  \implies \:  \sf{  log_{10}(10.01)  =  1  + 0.0004343\: }

 \displaystyle \:  \implies \:  \sf{  log_{10}(10.01)  =   1.0004343\: }

RESULT

 \boxed{ \displaystyle \: \:  \sf{  log_{10}(10.01)  =   1.0004343\: \:  \:  }}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Use Rolles Theorem to find a real number in the interval (0,3) Where the derivative of the function f(x)=x(x-3)^2 Vanish

https://brainly.in/question/22736169

Similar questions