Math, asked by vardan647, 11 months ago

log12 to base 7=a, log 24 to base12=b . Find log 168 to base 54​

Answers

Answered by slicergiza
17

To find: \log_{54}168

Here, \log_{7}12=a and \log_{12}24=b

Using the property \log_{a} b=\frac{1}{\log_{b}a}

\log_{12}7=\frac{1}{a}

Thus,

\log_{12}7+\log_{12}24=\frac{1}{a}+b

Using the property \log (mn)=\log m+\log n

\log_{12}168=\frac{1}{a}+b     ...... (1)

Now, using the property \log_{a}b=\frac{\log_{x}b}{\log_{x}a},

\log_{54}168=\frac{\log_{12}168}{\log_{12}54}

From equation (1),

\log_{54}168=\frac{b+\frac{1}{a}}{\log_{12}54}   ...... (2)

Again, \log_{12}54=\log_{12}(3^3\times 2)

                       =\log_{12}3^3+\log_{12}2

                       =3\log_{12}3+\log_{12}2                (∵ \log a^b=b\log a  )

Solve \log_{12}24=b as follows:

        \log_{12}(3\times 2^3)=b

\log_{12}(3)+3\log_{12} 2=b

                  \log_{12} 3=b-3\log_{12}(2)

Thus,

\log_{12}54=3b-9\log_{12}(2)+\log_{12}2

            =3b-8\log_{12}(2)

Also, \log_{12}24=b

     \log_{12}(12\times 2)=b

\log_{12}12+\log_{12}2=b          

         1+\log_{12}2=b                   (∵ \log_{a} a=1)

        \implies \log_{12}2=b-1

So,

\log_{12}54=3b-8(b-1)

            =3b-8b+8

            =8-5b

That is, \log_{12}54=8-5b

Substitute this value in equation (2),

\log_{54}168=\frac{b+\frac{1}{a}}{8-5b}

             =\frac{ab+1}{8a-5ab}

Therefore, \log_{54}168=\frac{ab+1}{8a-5ab}

Similar questions