Math, asked by harshjaiswal52, 1 year ago

log2(5+log3a)=3 log5(4a+12+log2b)=3 then a+b equal to​

Attachments:

Answers

Answered by MaheswariS
0

\textbf{Given:}

\log_2(5+\log_3a)=3

\log_5(4a+12+\log_2b)=3

\textbf{To find:}

\text{The value of $a+b$}

\textbf{Solution:}

\text{Consider,}

\log_2(5+\log_3a)=3

\text{Convert it into exponential form, we get}

5+\log_3a=2^3

\log_3a=8-5

\log_3a=3

a=3^3

\implies\boxed{\bf\,a=27}

\text{Consider,}

\log_5(4a+12+\log_2b)=3

\text{Convert it into exponential form, we get}

4a+12+\log_2b=5^3

4(27)+12+\log_2b=125

108+12+\log_2b=125

120+\log_2b=125

\log_2b=5

b=2^5

\implies\boxed{\bf\,b=32}

\text{Now,}

a+b=27+32=59

\therefore\textbf{The value of a+b is 59}

Find more:

x^2 + y^2= 25xy, then prove that 2 log(x+y)=3log3+logx+logy

https://brainly.in/question/477579

If 2log(x-y)=logx +logy, prove that 2log(x+y)= log5+logx +logy

https://brainly.in/question/16912979

Similar questions