Math, asked by hridyaanshshukla9, 5 days ago

log2 (x - 1) = 1 + log2 (2x - 3)

plz tell tomorrow test . and 2 is base ​

Answers

Answered by mathdude500
7

Question :-

Solve for x :

\rm \:  log_{2}(x - 1)  = 1 +  log_{2}(2x - 3)  \\

\large\underline{\sf{Solution-}}

Given Logarithmic equation is

\rm \:  log_{2}(x - 1)  = 1 +  log_{2}(2x - 3)  \\

Before start the solution, let first define the domain.

So, for given equation to be defined,

\rm \: x - 1 > 0 \:  \: and \:  \: 2x - 3 > 0 \\

\rm \: x > 1 \:  \: and \:  \: 2x > 3 \\

\rm \: x  > 1 \:  \: and \:  \: x > \dfrac{3}{2}  \\

\rm\implies \:  \: x > \dfrac{3}{2}  \\

Now, Consider

\rm \:  log_{2}(x - 1)  = 1 +  log_{2}(2x - 3) \\

We know,

\boxed{\sf{  \:\rm \:  log_{x}(x)  = 1 \:  \: }} \\

So, using this result, the above expression can be rewritten as

\rm \:  log_{2}(x - 1)  =  log_{2}(2)  +  log_{2}(2x - 3)  \\

We know,

\boxed{\sf{  \:\rm \:  log_{a}(x) +  log_{a}(y) =  log_{a}(xy) \:  \: }} \\

So, using this result, we get

\rm \:  log_{2}(x - 1)  =  log_{2}(2(2x - 3))  \\

\rm \:  log_{2}(x - 1)  =  log_{2}(4x - 6)  \\

\rm \: x - 1 = 4x - 6 \\

\rm \: x - 4x = 1 - 6 \\

\rm \:  - 3x =  - 5\\

\rm\implies \:x = \dfrac{5}{3}  \:  \in \: \bigg(\dfrac{3}{2} , \:  \infty  \bigg)  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:\rm \:  log_{a}(x) -   log_{a}(y) =  log_{a} \bigg(\frac{x}{y}\bigg)  \:  \: }} \\

\boxed{\sf{  \:\rm \:  log_{a}( {x}^{y} )  =  y \: log_{a}(x)  \:  \: }} \\

\boxed{\sf{  \:\rm \:  log_{x}( {x}^{y} )  = y \: }} \\

\boxed{\sf{  \:\rm \:  log_{ {x}^{z} }( {x}^{y} )  =   \frac{y}{z}  \: }} \\

\boxed{\sf{  \:\rm \:  log_{ {x}^{z} }( {w}^{y} )  =   \frac{y}{z} log_{x}(w)   \: }} \\

\boxed{\sf{  \:\rm \:  {a}^{ log_{a}(x) }  = x \:  \: }} \\

\boxed{\sf{  \:\rm \:  {a}^{y log_{a}(x) }  =  {x}^{y} \:  \: }} \\

Answered by maheshtalpada412
3

 \color{orangered}\[ \begin{array}{l}   \begin{array}{l} \tt \log _{2}(x-1)=1+\log _{2}(2 x-3) \\ \\  \tt \log _{2}(x-1)=\log _{2} 2+\log _{2}(2 x-3) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \qquad  \qquad  \qquad \qquad\left(\because \log _{u} a=1\right) \end{array} \\  \\  \tt\log _{2}(x-1)=\log _{2}[2 \times(2 x-3)] \\  \\  \tt\text { Comparing, } \\ \\  \tt x-1=2(2 x-3) \\ \\  \tt x-1=4 x-6 \\   \\  \tt\Rightarrow 4 x-x=6-1 \\ \\  \tt \Rightarrow 3 x=5 \Rightarrow x=\dfrac{5}{3} \\ \\  \tt \therefore x=\dfrac{5}{3} \end{array} \]

Similar questions